

MB-Lite+ Example Designs Manual i

Delft University of Technology
Faculty of Electrical Engineering,
 Mathematics and Computer Science
Department Microelectronics and Computer Engineering
Circuits & Systems Group

MB - Lite +
Example Designs Manual

Version 12.1.2

H.J. Lincklaen Arriëns, BSc.
April, 2012.

ii MB-Lite+ Example Designs Manual

MB-Lite+ Example Designs Manual
© H.J. Lincklaen Arriëns 2010-2012

The author assumes no responsibility whatsoever for use of the software by other parties, and makes no
guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
The software is free for non-commercial use. Acknowledgement is appreciated.
Commercial use is strictly prohibited, unless a written consent has been obtained from the author.

MB-Lite+ Example Designs Manual iii

Table of Contents

1 Introduction ... 1

1.1 Example Designs... 1
1.1.1 Hello .. 1
1.1.2 SW Test .. 1
1.1.3 Integer-DCT with FSL ... 1
1.1.4 Memory Mapped Slaves and Slave Emulators .. 1

1.2 General Setup of an MB-Lite+ SoC and design .. 2
1.3 Implementation Tree .. 3
1.4 Initial Setup .. 5

2 Hello ... 6
2.1 Top Level HDL Description ... 6
2.2 Software Description .. 6
2.3 Simulation ... 7
2.4 Synthesis and Implementation .. 10
2.5 Final Test .. 11

3 SW Test .. 12
3.1 HDL Setup .. 12
3.2 Software Setup .. 12
3.3 Simulation ... 13
3.4 Synthesis and Implementation .. 13
3.5 Test Results .. 14

4 Integer-DCT with FSL .. 16
4.1 Some Math .. 16
4.2 HDL Setup .. 17
4.3 Software Setup .. 18
4.4 Simulation ... 18
4.5 Synthesis and Implementation .. 19
4.6 Test and Verification .. 19

5 Memory Mapped Slaves and Slave Emulators ... 23
5.1 Some thoughts about slaves ... 23
5.2 Setup of the tumbl_slaves_ex_SoC .. 26
5.3 HDL Setup .. 27
5.4 Software Setup .. 29
5.5 Simulation ... 29
5.6 Synthesis and Implementation .. 29
5.7 Test and Verification .. 30

6 Conclusion .. 31
Appendix ... 32

iv MB-Lite+ Example Designs Manual

This page intentionally left blank

MB-Lite+ Example Designs Manual 1

1 Introduction

This document describes a number of example FPGA designs, based on the MB-Lite+ that has been
developed on the Delft University of Technology.
The procedures followed in the designs are strongly driven by the available hardware, tools and
licenses provided by our University and my own preferences and experience. In no way I pretend that
the strategy proposed here is the ultimate or the most efficient one, but it surely works for me.
In any case, it shows my/our preference for a command line approach.

The resulting bit-files are for Xilinx Spartan 3 and Spartan 6 FPGA’s, more specifically situated on an
AVNET XC3S2000 Development Kit and on an AVNET Spartan 6 LX9 MicroBoard (both provided
with an X-tal clock of 100 MHz).
Simulations have been carried out with Mentor Graphics’ ModelSim SE-64 v10.0c, while for obtaining
the bit-files Synopsys’ Synplify Premier F-2011.09-SP1-1 and Xilinx’ ISE Design Suite 13.2 have been
used. All programs executed on a Windows 7 PC with Cygwin (1.7.9-1) installed.

1.1 Example Designs
The examples to be described are:

1.1.1 Hello
This example describes a basic tumbl/uart setup to check serial communication (19200 Bd). Since the
uart is the only ‘external’ device, no dmb_selector has been used.

1.1.2 SW Test
A more comprehensive test (again tumbl/uart), where the tumbl now includes a hardware multiplier
and a hardware barrel shifter. The software checks the behavior of these modules, as well as the
interrupt mechanism (interrupt generated by the uart when a key is pressed), and several other low
level software/assembler instructions.
Although again the uart is the only ‘external’ device, a dmb_selector has been used here.

1.1.3 Integer-DCT with FSL
In this example, which has been inspired by the (deprecated) XAPP529 Application Note from Xilinx,
a tumbl_FSL_M_S is connected to an FSL component that performs an Integer Discrete-Cosine-
Transform on an 8x8 data matrix. The FSL Channels (from the tumbl_FSL_M_S’s Master output to
the iDCT module’s Slave input, and back from the iDCT’s M-output to the tumbl_FSL_M_S’s S-input
are both made up with a custom single delay deep FIFO element.

1.1.4 Memory Mapped Slaves and Slave Emulators
Here, a tumbl is connected to a number of modules that emulate slave devices using memory mapped
registers for data communication and that each can emulate a (relatively) time consuming operation.
Also connected are the uart and a memory mapped register to enable software control of LEDs present
on a pcb.

2 MB-Lite+ Example Designs Manual

1.2 General Setup of an MB-Lite+ SoC and design
Referring to the MB-Lite+ User Guide, Figure 1.1 gives an impression of a circuit with a
tumbl_JTAG_FSL_M_S as the basic building block, connected to several interfaces to peripheral
devices. In the figure, tumbl_SoC indicates the synthesizable part, that can be simulated (with
different parameters if needed) using a tb_tumbl_SoC testbench.

Figure 1.1 Example scheme of a SoC with an MB-Lite+ with JTAG
i/o and connections to synchronous and asynchronous slave interfaces,
wishbone slaves, as well as FSL_master- and FSL_slave-interfaces.

MB-Lite+ Example Designs Manual 3

1.3 Implementation Tree

In the MB-Lite+ release package the designs/-directory is subdivided in a number of subdirectories:

 designs
 │

 ├── hello vhdl descriptions for the hello example
 │ ├─── sw dedicated software to be executed by the tumbl
 │ ├─── tb_msim the vhdl testbench for this design
 │ │ └─── msim project directory for ModelSim

 │ └─── synth project directory for Synplify
 │ ├─── rev_1 work directory for Synplify and ISE (XC3S2000 here)
 │ └─── rev_2 work directory for Synplify and ISE (6LX9 here)
 │

 ├── sw_test vhdl descriptions for the sw_test example
 │ ├─── sw dedicated software for the tumbl (full version)
 │ ├─── sw_6LX9 software version adapted for the 6LX9
 │ ├─── tb_msim the vhdl testbench for this design
 │ │ └─── msim project directory for ModelSim

 │ └─── synth project directory for Synplify
 │ ├─── XC3S2000 implementation directory for Synplify and ISE
 │ └─── 6LX9 implementation directory for Synplify and ISE
 │

 ├── fsl_idct vhdl descriptions for the fst_dct example
 │ ├─── matlab Matlab verification data

 │ ├─── sw dedicated software to be executed by the tumbl
 │ ├─── tb_msim the vhdl testbench for this design
 │ │ └─── msim project directory for ModelSim

 │ └─── synth project directory for Synplify
 │ ├─── XC3S2000 implementation directory for Synplify and ISE
 │ └─── 6LX9 implementation directory for Synplify and ISE
 │

 └── slaves_ex vhdl descriptions for the slaves_ex example
 ├─── sw dedicated software to be executed by the tumbl
 ├─── tb_msim the vhdl testbench for this design
 │ └─── msim project directory for ModelSim

 └─── synth project directory for Synplify
 └─── 6LX9 implementation directory for Synplify and ISE

Figure 1.2 designs/ directory tree.

4 MB-Lite+ Example Designs Manual

This is also illustrated in Figure 1.3, together with the files expected to be present or to be created in
the several subdirectories.

design_name
top_level_soc.vhd
sys_ctrl.vhd

(additional ip.vhd-files)

sw

Makefile
mem_defs.ld
memmap.h

additional .h and .c-files

tb_msim
tb_soc.vhd

msim
make_mpf.do

msim.mpf
(wave.do)

synth
synth.prj
(synth.sdc)

rev_1

design_name.edf
board_def.ucf
design_name.bmm
make_bit_bmm
makemem

tumbl_16kB_16kB.bmm

imem_dmem.mem

i_ramb_#.mem
i_ramb_#_d0.mem
i_ramb_#_d1.mem
i_ramb_#_d2.mem
i_ramb_#_d3.mem
start.do

tumbl_#k_#k.bmm

’make msim’
’make synth’

imem_dmem.mem

tb_soc.vhd

design_name

Figure 1.3 Directory structure and basic files setup.

MB-Lite+ Example Designs Manual 5

1.4 Initial Setup

To ease the design process, a number of scripts and supporting programs are provided.

Especially the software make-process relies heavily on such utilities. They are provided as c-source
files in the sw_utils/src-directory, and should be compiled for the OS to be used beforehand (see the
MB-Lite+ User Guide).

The path to where the resulting executables are located has to be made known in the
mbl_settings.def-file (see the SUPATH variable), which in turn will be read by the Makefile in the
sw-directory later on (only a single mbl_settings.def-file will be necessary on a certain machine,
and in these examples it is located in the MB-Lite_Plus_v12.1-directory.
The mbl_settings.def file also has to contain information about the location of the mb-gcc
executables (MBPATH).

From Figures 1.2 and 1.3, it can be seen that each design is fit in a directory structure like

 design_name vhdl descriptions specific for this design
 │

 ├─── sw software to be executed by the tumbl for this design
 │
 (simulation related)

 ├─── tb_msim the vhdl testbench for this design
 │ └─── msim project directory for ModelSim
 │
 (synthesis related)

 └─── synth project directory for Synplify
 └─── rev_#|name work directory for Synplify and ISE

It is supposed here that such a tree has been set up beforehand.
Next to that, it can be good practice to also copy

• Makefile_template, memmap.h_template and mem_defs.ld_template from the misc_sw/-
directory into the sw/-directory,

• make_mpf_template from the scripts/-directory into the tb_msim/msim/-directory,

• makebit_bmm and makemem from the scripts/-directory into the synth/rev/-directory, and

• the.ucf-file to be involved from the scripts/-directory into the synth/rev/-directory.

6 MB-Lite+ Example Designs Manual

2 Hello

2.1 Top Level HDL Description
This example describes a basic tumbl/uart setup to check serial communication (19200 bps).
The clock signals for both the tumbl and the uart are chosen to be 50 MHz and are derived from the
100 MHz X-tal clocks on the development boards.
The uart used here originates from the AVR8 opencore release by Ruslan Lepetenok. It can be
controlled by means of 4 consecutive 8-bit registers, viz.

• a Baud Rate Register (UBRR, memory address UART_BASEADDR + 0x03, see uart_AVR.h),
• a Control Register (UCR, addressable at UART_BASEADDR + 0x07),
• a Status Register (USR, addressable at UART_BASEADDR + 0x0b), and
• the I/O Data Register (UDR, addressable at UART_BASEADDR + 0x0f).

Since the uart is the only ‘external’ device, no dmb_selector has been used, and ART_BASEADDR
can be every address on a 32-bit word boundary above the data memory (arbitrary set to 0x80000000
in memmap.h, see also the Software Description section).

The following files should be present in the hello/-directory (Figure 1.2):

 sys_ctrl.vhd the controller (clock divider and reset circuitry) for this design
 tumbl_uart_soc.vhd top level circuit description for synthesis (50 MHz tumbl-clock)

sys_ctrl.vhd is an edited version of sys_ctrl.vhd_template from the misc_hdl/ directory and
consists only of a clock divider to obtain the clock for the tumbl and the usrt, and a debouncer circuit
for the reset buttons on the pcbs.

In tumbl_uart_soc.vhd the generics MST_DIV_FACTOR_g and MST_PERIODS_HIGH_g set the division
factor and duty-cycle for the clock signal. MST_PERIODS_HIGH_g controls the integration time-
constant for the reset signal, expressed in number of clock cycles of the X-tal clock (1 ms here).

IMEM_ABITS_g and DMEM_ABITS_g set the sizes for respectively imem and dmem both to 14 bits, i.e.
16 kBytes or 4 kWords of 32-bits each.

Since the uart is the only device to be addressed in the external memory space, the single
XMEMB_sel_o signal can be used as the selector for the uart, so avoiding the need for a dmb_selector.

The uart is prevented to stall or interrupt the tumbl by means of hard wired connections to VCC and
GND respectively.

2.2 Software Description
If the hardware setup is assumed to be correct, the software to be run by the tumbl can be developed.
The sw/-directory is meant for this purpose, and for this example will contain:

 memmap.h the memory map base address of the uart
 uart_AVR8.h description of the uart’s registers and BaudRate
 uart_AVR8.c low level functions for serial communication
 hello.c the actual c-source of the actions to be performed
 Makefile input commands for the make utility

 mem_defs.ld definition of imem and dmem sizes

MB-Lite+ Example Designs Manual 7

Except for the main c-file (hello.c here), all files have been copied from the misc_sw/ directory,
while some of them needed to be tailored to this design.

The purpose of memmap.h is to define the base-adresses of all devices to be visible in the memory map.
Since now the uart is the only device, while always being selected when an address outside dmem’s
range is seen, the UART_BASEADDR given here has in fact no real meaning.

uart_AVR8.h defines the addresses of the uart’s registers (all 8-bits wide), and the functions of the
specific bits in these registers. Since this uart has originally been designed for an Atmel AVR soft core,
the reader is referred to the AVR’s manual for further information.
Also in uart_AVR8.h, the relationship between uart-clock and Baudrate is given. Notice again that
the uart has been designed for an 8-bit device and a clock of around 4 MHz, so is equipped with an also
8-bits programmable divider register. This means that without any changes, the lowest supported
Baudrate when using a clockspeed of 50 MHz will be 19200 bps. If lower Baudrates would be really
needed, the easiest solution would be to increase the fixed internal divide-by-16 counter to e.g. divide-
by-128 and to change the macro in uartAVR8.h accordingly.

Some things that always should be accounted for:
• All necessary c-files have to be mentioned in the Makefile,
• The variables IMEM_ABITS and DMEM_ABITS in the Makefile should be equal to respectively the

generics IMEM_ABITS_g and DMEM_ABITS_g in the top level vhdl file, and should correspond with
the LENGTH’s definitions (size in Bytes) of imem and dmem in mem_defs.ld,

• If different or additional directory names (e.g. several revisions) appear in the tree, reflect this in
the TBPATH and SYNPATH variables (Makefile).

At this time –provided the tree has been created first- it is possible to create the data files needed for
simulation with
 make msim

in a Cygwin environment, and/or all files to be used for synthesis with
 make synth

As a result of the make msim command, a number of files containing memory data will be copied to the
designs/hello/tb_msim/msim/-directory, the number of which being dependent on the memory
type and sizes involved. Instruction memory data will be recognizable as i_ramb_#.mem, data memory
contents will be named i_ramb_#_d0.mem …. i_ramb_#_d3.mem.
Next to that, a file start.do will be created in the afore mentioned directory containing the
commands to load these memory files into the simulator.
As a reminder about the memory sizes in the current design, a file IMEM_ABITS_#__DMEM_ABITS_#
will be created in the tb_msim/-directory.

2.3 Simulation
The designs/hello/tb_msim/ directory is intended to contain the top level testbench file,
tb_soc.vhd.

Being the top level file, all generics defined in the testbench entity will overrule all others. In some
case this can be profitable to speed up simulations that tend to be time consuming when used with
realistic values needed for synthesis, while leaving the synthesis generics unaltered.

The subdirectory msim/ is intended to contain all ‘lower level’ and command files that are needed for
the simulation, while all data created by the simulator itself is written in still lower subdirectories.

8 MB-Lite+ Example Designs Manual

In the designs/hello/tb_msim/msim/-directory a script-file make_mpf.do can be found to ease
creation of the project file for ModelSim. The make_mpf.do here, contains the information specific for
this example, but can be the basis for other designs.
It can be invoked by a
 vsim -c -do make_mpf.do

from the command line, and will create the msim.mpf project file (derived from ModelSim’s current
modelsim.ini file).

Special care has to be taken that the memories to be loaded with start.do are all visible and
recognizable after compilation by the names given in there, instead of probably being optimized and
renamed. Moreover, it is the intention of this example to also show many of the signals of the tumbl,
its architecture and peripherals, and so optimization is not a good idea here.
To completely avoid optimization, edit the project file and change the default value for the VoptFlow
directive from a 1 into a 0 1). VoptFlow can be found in the [vsim]-section.

A prefabricated version of an msim.mpf project file will already be available in the tb_msim/msim/-
directory.
Note that –by using Xilinx Block RAMs in this example- the UNISIM library should be precompiled and
accessible. Of course, pathnames in the project file given are only valid for the system it has been
tested on.

Also available in the tb_msim/msim/-directory will be a file called wave.do. This file can be executed
during a simulation and sets and controls the layout of the Wave window.

The procedure to be followed now, can be as follows.

• start ModelSim and open the existing msim.mpf project file,
• create a work-subdirectory by entering

vlib work

in the Transcript window,
• compile all files in the correct order (Auto Generate available),
• simulate tb_soc (Library tab, work library, ‘without Optimization’ if default setting hasn’t

been changed before)
• if wanted, check under the Memory List tab that all memories are visible (path/mem)
• in the Transcript window, enter

do wave.do

and

do start.do (second Return needed, or clock OK)

• now the simulation can be Run ….

1) If totally disabling optimization is not an option, selective visibility of the memories can be
accomplished by starting vsim with -voptargs="+acc=v+/path_to_the_memory/mem commands.
See the ModelSim documentation.

MB-Lite+ Example Designs Manual 9

Note:
Displaying waveforms for large memory blocks in ModelSim may severely slow down working with
the waveform viewer. In the before mentioned wave.do file the lower level parts of memory blocks
are omitted. On the other hand, (only when simulating, not synthesized) a special array “ram” has
been added for easily viewing and debugging the contents of the General Purpose Registers File
(see the gprf_abd_xxxx.vhd files in the hdl/memories/ directories).

Figure 2.1 ModelSim wave output showing
the first characters transmitted by the uart (by
lowering the division factor in uartAVR8.h to
10, simulated baudrate is about 300 kbit/s).

tu
m

bl
_u

ar
t_

so
c 0

ns
40

00
0

ns
80

00
0

ns
12

00
00

 n
s

tu
m

bl
_u

ar
t_

so
c

/tb
_s

oc
/I_

S
O

C
/ip

ad
_c

lk
_e

xt

/tb
_s

oc
/I_

S
O

C
/ip

ad
_r

st
_b

tn

/tb
_s

oc
/I_

S
O

C
/ip

ad
_r

xd

/tb
_s

oc
/I_

S
O

C
/o

pa
d_

tx
d

/tb
_s

oc
/I_

S
O

C
/c

lk
_s

/tb
_s

oc
/I_

S
O

C
/rs

t_
s

/tb
_s

oc
/I_

S
O

C
/d

on
e_

s

/tb
_s

oc
/I_

S
O

C
/x

se
l_

s

/tb
_s

oc
/I_

S
O

C
/ir

es
et

_s

/tb
_s

oc
/I_

S
O

C
/e

na
_u

ar
t_

s

/tb
_s

oc
/I_

S
O

C
/io

re
_s

/tb
_s

oc
/I_

S
O

C
/io

w
e_

s

st
ar

tb
it

st
ar

tb
it

st
ar

tb
it

st
ar

tb
it

st
op

bi
t

st
op

bi
t

st
op

bi
t

<L
F>

H
e

10 MB-Lite+ Example Designs Manual

2.4 Synthesis and Implementation
In the designs/hello/synth/-directory, 2 files will already be present, viz.

 synth.prj project file for Synplify
 synth.sdc (timing) constraints for Synplify

The project file can be created by building the circuit in the Synplify GUI, but it may be far easier to
simply edit a (template) project file. The .prj-file given here can be a good starting point.

When previously a make synth has been issued from the sw-directory, a file called tumbl_#kB_#kB.bmm
can be found here, where # indicates the sizes in Bytes of program and data memory respectively.
This file is needed by the Xilinx tools, and –for being recognized needs to be copied to the revision
directory and to be renamed to “the_name_of_the_edf_file”.bmm (tumbl_uart_soc.bmm for this
example).
Its contents are used to indicate how exactly the imem_dmem.mem-file data that –also by the make synth
command copied into the revision directory- should be located into the FPGA’s BRAMs (see also
Figure 1.3).

It is supposed here that synthesis with Synplify, using the project file given, has been accomplished
and that, let’s say rev_1 (the directory for the XC3S2000 implementation) has been created and has
been written to by the synthesizer.
This rev_1 will also the working directory for the Xilinx tools.
To run these tools, next to the .bmm-file mentioned before, 3 more files will be needed, viz.

• AVNET_DK_xc3s2000.ucf, which lists the pin definitions for the AVNET Development Kit,
• makebit_bmm, which is a script for generating a bit file using the Xilinx ISE tools, and
• makemem, which is a script for writing or updating the BRAMs reserved for imem and dmem in the

previously created or current bit-file.

The commands for executing the scripts for this example will be:

./makebit tumbl_uart_soc AVNET_DK_xc3s2000

If successful, to be followed by

./makemem tumbl_uart_soc imem_dmem.mem

The result will be a completely programmed .bit-file, by default named program.bit, that can be
uploaded into the fpga with Xilinx’s iMPACT.

In designs/hello/synth/rev_1/ already a prefabricated, reference hello.bit will be present.

Notice, that once a correct bit-file exists (i.e. the implemented hardware is believed to function
correctly), and when only changes in the software have been made, it suffices to only run
make synth and makemem as mentioned above.

MB-Lite+ Example Designs Manual 11

The designs/hello/synth/rev_2/-directory already contains files for the LX9 MicroBoard:

• AVNET_DK_xc3s2000.ucf, which lists the pin definitions for the MicroBoard,
• the makebit_bmm and makemem scripts mentioned before, and
• the hello.bit reference for this LX9 MicroBoard.

Notice that the description of the Xilinx memories refers to RAMB16_S36, RAMB16_S9 and
RAMB16_S36_S36 Block RAM Library primitives. These are completely valid for the Spartan 3 device
on the AVNET Development Kit. The Spartan 6 on the MicroBoard in fact prefers to use the more
elaborate RAMB16BWER and RAMB8BWER primitives.
Fortunately, the Xilinx ISE tools know how to translate the RAMB16_S# primitives into the correct
RAMB16BWERs, at the penalty of a warning issued for each translation needed (so expect to see 19
warnings for a design with 16 kB imem and 16 kB dmem when makebit_bmm is executing).

2.5 Final Test
Xilinx’s iMPACT can be used for transferring the bit-file to an FPGA.
Figure 2.2 shows a screenshot of a TeraTerm window after programming a MicroBoard with the
hello.bit file.
In the Terminal Setup, a LF was assigned to be the newline character when receiving, and a CR for
transmitting.
The serial port has been configured for 19200 Baud, 8 data bits, no parity and 1 stop bit.
The com-port number itself depends on the FPGA board used and whether or not special drivers are
needed.

Figure 2.2 Screenshot of a TeraTerm window after
programming the LX9 MicroBoard with hello.bit

12 MB-Lite+ Example Designs Manual

3 SW Test

This example is a somewhat extended version of the sw_testbench, described by Tamar Kranenburg
in his Master of Science Thesis “Design of a Portable and Customizable Microprocessor for Rapid
System Prototyping”, CAS-MS-2009-13, available from http://opencores.org/project,mblite,overview

The procedure that has been followed is equivalent with the one described in the previous example.

3.1 HDL Setup
First the HDL description is completed. Now, although for this software test again only one external
uart will be used that can be selected by the XMEMB_sel_o signal, here the selection is done with the
aid of a dmb_selector component.

Also, the tumbl is extended with a hardware multiplier and a hardware barrel-shift unit by setting the
generics USE_HW_MUL_g and USE_BARREL_g both to TRUE.

Thus, in the designs/sw_test/-directory can be found:

 sys_ctrl.vhd the controller (clock divider and reset circuitry) for this design
 tumbl_uart_soc.vhd top level circuit description for synthesis (25 MHz tumbl-clock)

Since it is expected that the software testbench will require larger memory sizes, IMEM_ABITS_g and
DMEM_ABITS_g are increased to both 15 bits, i.e. 32 kBytes or 8 kWords of 32-bits each, which will
nicely fit in the XC3S2000.

However, the intention is to also run this test on the LX9 MicroBoard, which supports a significantly
smaller FPGA device. Therefore, software and synthesis (there is no intention to simulate the
complete design until the end) are split in two tracks, one for the complete design on the XC3S2000
and one with a design that lacks the memory consuming Dhrystone test, to run on the LX9
(IMEM_ABITS_g and DMEM_ABITS_g remain 14 bits in that case).

3.2 Software Setup
For clarity, we will distinguish two separate software directories:
sw/ will contain the files for the complete test, sw_6LX9/ for the smaller one.

Since the tumbl now is equipped with a hardware multiplier and a hardware barrel shifter, the flags
in the Makefile(s) are adapted to reflect this in the compiled code by setting the directives

 HWMUL = no-xl-soft-mul

 BARREL = xl-barrel-shift

Then, in the designs/sw_test/sw/-directory:

 dhry.c c-source for the Dhrystone benchmark
 dhry.h header file for dhry.c
 Makefile input commands for the make utility
 mbl_asm.h additional Macros and assembler code needed here
 memmap.h the memory map base address of the uart

http://opencores.org/project,mblite,overview

MB-Lite+ Example Designs Manual 13

 mem_defs.ld definition of imem and dmem sizes
 testbench.c the actual c-source of the actions to be performed (full version)
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

and in the designs/sw_test/sw_6LX9/-directory:

 Makefile input commands for the make utility
 mbl_asm.h additional Macros and assembler code needed here
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 testbench.c the actual c-source of the actions to be performed (19200 Bd)
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

As can be expected, a closer inspection of the files will show only small differences.

3.3 Simulation
In the designs/sw_test/tb_msim/-directory:

 tb_soc.vhd top level testbench file (generics given here overrule all others)

In the designs/sw_test/tb_msim/msim/-directory:

 msim.mpf (template) project file for ModelSim

 wave.do waveform layout definition for this design

3.4 Synthesis and Implementation
In the designs/sw_test/synth/-directory:

 synth.prj project file for Synplify
 synth.sdc (timing) constraints for Synplify

In the designs/sw_test/synth/XC3S2000/-directory:

 sw_test_xc3s2000.bit this is the working code to be programmed in the XC3S2000

In the designs/sw_test/synth/6LX9/-directory:

 sw_test_6LX9.bit this is the working code to be programmed in the 6LX9

Some files, especially in the project directories, have been left out here, since either
• they are created during the software creation process, or since
• their purpose shall be clear from the previous example.

14 MB-Lite+ Example Designs Manual

3.5 Test Results
Figure 3.1 shows a screenshot of a TeraTerm window after programming the LX9 MicroBoard with
the software testbench, while Figure 3.2 shows the output of the Dhrystone part of the complete test
performed on an XC3S2000.

Figure 3.1 Screenshot of a TeraTerm window after
programming the LX9 MicroBoard with sw_test_6LX9.bit

MB-Lite+ Example Designs Manual 15

Figure 3.2 Screenshot of the output of the
Dhrystone part of the complete test performed on an
XC3S2000

16 MB-Lite+ Example Designs Manual

4 Integer-DCT with FSL

This example describes the interconnection of a tumbl_fsl with 1 FSL_M and 1 FS_S port, and a
dedicated 8x8 integer-DCT IP block that also communicates by means of FSL ports.
The tumbl_fsl writes batches of 8 data values to the iDCT block that performs the DCT
transformation, and that returns a batch of 8 results to be read by the tumbl_fsl.
Between the tumbl_fsl’s FSL ports and those of the iDCT block, two uni-directional FSL bus
interface are to be connected, usually consisting of a number of FIFOs. Xilinx provides dedicated
FSL_V20 LogiCore elements for this purpose, with depths selectable from 1 to 8k.
For this example, a single, synchronously clocked FIFO has been used, the VHDL code of which is
given in fsl_bb1.vhd.

4.1 Some Math
The main computational task in the iDCT module is the multiplication of two 8-by-8 integer matrices,
e.g. series of multiplications and summations of vector elements.
One of these matrices is hard coded in the VHDL hardware, while the other data matrix will be
defined in software.
To give this example a somewhat scientific flavor, the hardware matrix is chosen to be a (scaled
version of a) Discrete Cosine Transform (DCT) kernel, defined with

𝐶𝑁𝐼𝐼 = �
𝜌𝑘
𝑁

 cos �
𝜋

2𝑁
 𝑘 (2𝑛 + 1)�

𝑤𝑖𝑡ℎ 𝑘,𝑛 = 0, 1,⋯ ,𝑁 − 1, 𝑁 = 8,

and 𝜌𝑘 = �
 1, 𝑘 = 0

 2, 𝑘 > 0

With a scale factor 𝛼 = 215√2, and rounding to the nearest integer, we define a 2-dimensional array

COEFF_MAT_c = 𝛼𝐴 = 𝛼𝐶8𝐼𝐼

in fsl_idct.vhd.
In order to obtain a result from the computations that will be quickly recognizable as being correct or
not, we let the software data array to be a (differently scaled) transposed version of the same kernel,

data_to_idct[] = 𝛽𝐴𝑇, where 𝛽 = 215.

Since the DCT kernel is orthonormal by definition, such that 𝐴𝑇 = 𝐴−1, and since

𝐀 𝐴−1 = 𝐼, we expect to obtain

𝛼𝐀 𝛽𝐴𝑇 = 𝛼𝛽 𝐼,

e.g. a scaled version of an 8x8 Identity Matrix.

In plain text, if we correlate functions that have identical shapes with each other, we expect maximum
correlation. If we also know that the several functions are orthogonal to each other, we know that all
cross-correlations will be zero. The result from our matrix multiplication then will be a matrix with
(relatively large) positive values on the main diagonal and zeros elsewhere (𝐼′).

MB-Lite+ Example Designs Manual 17

However, since we are working with rounded, integer data, the resulting output won’t be ideal and we
may expect to find (small) values differing from zeros off-diagonal and the values on the diagonal to
also show small differences. In the example, the output values are again scaled, such that the smallest
values differing from zero are + or −1.

The final result can be described with

𝐼′

𝛾
 𝑤𝑖𝑡ℎ 𝛾 = 212

Since all input data values and all transform data values are less than 16-bit wide, a single
MUL18x18S multiplier element in case that the XC3S2000 is used or a single DSP48A1 in case of the
Spartan 6, will be inferred.

While all intermediate results (additions) will be calculated using a 32-bit (or even 48-bit in case of the
DSP48A1) data bus (fsl_idct.vhd), overflow errors can’t occur. Given the scaling factors mentioned,
the final output returned to the tumbl_fsl will need 20 significant bits at most.

4.2 HDL Setup
In the designs/fsl_idct/-directory, the already familiar sys_ctrl.vhd can be recognized, together
with the dedicated top level fsl_idct_uart_soc.vhd (50 MHz clock, both generics N_FSL_M_g and
N_FSL_S_g set to 1).

Next to these, three more IP files are to be found, viz.

 fsl_bb1.vhd FSL Master-to-Slave interface (one level deep)
 fsl_idct.vhd the integer Discrete Cosine Transform block
 fsl_idct_Pkg.vhd package file with component declarations

Block diagrams of the fsl_bb1 and fsl_idct components showing their i/o connections are given in
Figure 4.1, while Figure 4.2 shows their interfacing to the tumbl_fsl.

clk_i
rst_i

FSL_M_Write_i
FSL_M_Data_i
FSL_M_Control_i

 FSL_S_Exists_o
 FSL_S_Data_o
FSL_S_Control_oFSL_M_Full_o

FSL_S_Read_i

32

32

FSL_bb1
clk_i
rst_i

FSL_M_Write_o
FSL_M_Data_o
FSL_M_Control_o

FSL_S_Exists_i
FSL_S_Data_i
FSL_S_Control_i

FSL_M_Full_i

FSL_S_Read_o

32

32

FSL_iDCT

Figure 4.1 Block diagrams of a) the fsl_bb1,
and b) the fsl_idct components.

a) b)

18 MB-Lite+ Example Designs Manual

4.3 Software Setup
In the designs/fsl_idct/sw/-directory, the already familiar files can be found:

 Makefile input commands for the make utility
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

together with two c-files:

 fsl_idct.c, which is the source file used for synthesis including uart (19200 Bd) output, and
 fsl_idct_msim.c, which is a special version without printout for faster simulation and testing.

4.4 Simulation
The testbench tb_soc.vhd can be found in the designs/fsl_idct/tb_msim/-directory, as expected,
with again the make_mpf.do, msim.mpf and wave.do for this design in the
designs/fsl_idct/tb_msim/msim/-directory.

clk_i

from sys_ctrlconnected to uart

clk_i

clk_i

rst_i

rst_i

rst_i

XMEMB_o

FSL_M_X_o[0]

FSL_S_X_o[0]

XMEMB_i

FSL_M_X_i[0]

FSL_S_X_i[0]
FSL_M_Write_o
FSL_M_Data_o
FSL_M_Control_o

FSL_M_Write_i
FSL_M_Data_i
FSL_M_Control_i

 FSL_M_Write_i
 FSL_M_Data_i
FSL_M_Control_i

FSL_S_Exists_i
FSL_S_Data_i
FSL_S_Control_i

 FSL_S_Exists_o
 FSL_S_Data_o
FSL_S_Control_o

FSL_S_Exists_o
FSL_S_Data_o
FSL_S_Control_o FSL_M_Full_i

FSL_M_Full_o

FSL_M_Full_o

FSL_S_Read_oFSL_S_Read_i

FSL_S_Read_i

32

32

32

32

tumbl_fsl

FSL_bb1

FSL_bb1

FSL_iDCT

Figure 4.2 Setup of the tumbl_fsl with the idct
module and two bus interfaces.

MB-Lite+ Example Designs Manual 19

4.5 Synthesis and Implementation
The synth.prj project file referring to the VHDL files needed for this example is again written in the
designs/fsl_idct/synth/-directory, with the prefabricated fsl_idct.bit files, respectively
for the XC3S200 Development Kit in designs/fsl_idct/synth/XC3S2000/, and
for the LX9 MicroBoard in designs/fsl_idct/synth/6LX9/.

4.6 Test and Verification
In the designs/fsl_idct/matlab/-directory, two files will be present:

 check_idct.m, which is a Matlab script file to calculate the results that have to be expected, and
 check_idct.out, which is a text file created with the above mentioned m-file showing final and

 intermediate results to compare with simulation results (see Figure 4.4).

Figures 4.3 to 4.5 respectively show a screenshot of the last part of the output text, simulation
output (compared with reference values) and a listing of the complete text output.

Figure 4.3 Screenshot of a TeraTerm window showing
the last part of the output stream.

20 MB-Lite+ Example Designs Manual

Figure 4.4 comparison of simulation
data and reference data obtained with
Matlab (check_idct.out).
Shown are the results of the
MAC_Vector_r register in the iDCT
module when the tumbl_fsl has just
written the 7th element of the 3rd row
(all data in hexadecimal format).

MB-Lite+ Example Designs Manual 21

 ###
 # #
 # Huib's FSL Reference Design #
 # with "tumbl_fsl_M_S" and "fsl_idct" #
 # #
 ###

 Compute 1st datablock out of 8

 Write input values to the FSL_M port
 11585; 11585; 11585; 11585; 11585; 11585; 11585; 11585;

 Read transformed values back from the FSL_S port
 370720; 0; 0; 0; 0; 0; 0; 0;

 Compute 2nd datablock out of 8

 Write input values to the FSL_M port
 16069; 13623; 9102; 3196; -3196; -9102; -13623; -16069;

 Read transformed values back from the FSL_S port
 0; 370725; 0; 12; 0; -5; 0; -3;

 Compute 3rd datablock out of 8

 Write input values to the FSL_M port
 15137; 6270; -6270; -15137; -15137; -6270; 6270; 15137;

 Read transformed values back from the FSL_S port
 0; 0; 370736; 0; 0; 0; -2; 0;

 Compute 4th datablock out of 8

 Write input values to the FSL_M port
 13623; -3196; -16069; -9102; 9102; 16069; 3196; -13623;

 Read transformed values back from the FSL_S port
 0; 5; 0; 370725; 0; 3; 0; -12;

 Compute 5th datablock out of 8

 Write input values to the FSL_M port
 11585; -11585; -11585; 11585; 11585; -11585; -11585; 11585;

 Read transformed values back from the FSL_S port
 0; 0; 0; 0; 370720; 0; 0; 0;

 Compute 6th datablock out of 8

 Write input values to the FSL_M port
 9102; -16069; 3196; 13623; -13623; -3196; 16069; -9102;

 Read transformed values back from the FSL_S port
 0; -12; 0; -3; 0; 370725; 0; -5;

Figure 4.5 listing of the output of the fsl_idct example

22 MB-Lite+ Example Designs Manual

 Compute 7th datablock out of 8

 Write input values to the FSL_M port
 6270; -15137; 15137; -6270; -6270; 15137; -15137; 6270;

 Read transformed values back from the FSL_S port
 0; 0; 2; 0; 0; 0; 370736; 0;

 Compute 8th datablock out of 8

 Write input values to the FSL_M port
 3196; -9102; 13623; -16069; 16069; -13623; 9102; -3196;

 Read transformed values back from the FSL_S port
 0; 3; 0; -5; 0; -12; 0; 370725;

 ... so, the complete output matrix:

 370720 0 0 0 0 0 0 0
 0 370725 0 12 0 -5 0 -3
 0 0 370736 0 0 0 -2 0
 0 5 0 370725 0 3 0 -12
 0 0 0 0 370720 0 0 0
 0 -12 0 -3 0 370725 0 -5
 0 0 2 0 0 0 370736 0
 0 3 0 -5 0 -12 0 370725

 ###
 # #
 # Huib's FSL Reference Design #
 # finished successfully #
 # #
 ###

continuing Figure 4.5

MB-Lite+ Example Designs Manual 23

5 Memory Mapped Slaves and Slave Emulators

Here, a tumbl will be connected to a number of modules that emulate slave devices using memory
mapped registers for data communication (tumbl_slaves_ex_SoC). Each of these special slaves is
intended to emulate an operation that takes an adjustable number of clock cycles.
Also connected are the uart and a memory mapped register to enable software control of LEDs when
present on a pcb.

5.1 Some thoughts about slaves
We will distinguish three kinds of peripheral slaves, viz.

• slaves that are completely located on the same FPGA or ASIC as the tumbl, with or without
external connections off-chip,

• slaves with their bus interface on the same chip as the tumbl, and another part located in a
dedicated component or electronics off-chip, e.g. an Ethernet controller, an LCD driver, etc., and

• slaves completely off-chip with a bus and bus drivers between the tumbl’s SoC and the slave.

Here, we will shortly discuss the second type mentioned, while the example is focussed on types of the
first kind.

Figure 5.1 shows block diagrams of resp. an Xmb_slave_interface (with the X representing either an
‘a’ for an asynchronous or an ‘s’ for a synchronous interface) and a wishbone slave interface.
The amb_ and smb_slave interfaces are defined with the same records and port names as used with
the dmb_adapter, the wishbone interface is shown with the port names defined in the Wishbone Specs
document.
The _slave_o output and _slave_i input represent records connecting to pads, specific for
interfacing the off-chip component.

Communication with the tumbl usually takes place by reading or writing to registers in the slave: data
registers, as well as control and status registers. These registers may either be direct copies or
registered versions of the off-chip components records, or be adjusted or combined ones, e.g. to obtain
a certain data bus width. In some cases, straight through connections to the off-chip component will be
possible.
Usually these registers are consecutively mapped in the slaves address space. Since the tumbl is a 32-
bit processor, slaves with a different data bus width need some kind of address mapping as explained
below.

The data bus width will generally be determined by the slave’s properties, and is usually but not
necessarily a multiple of 8-bits (given in MW_DBITS_g or WB_DBITS_g). Referring to the section about
data alignment in the MB-Lite+ User Guide, and noticing that the software recognizes WORDS,
HALFWORDS and BYTES, it seems reasonable to align a 16-bit slave with data lines d15--d0, and an
8-bit slave with data lines d7--d0, i.e. the least significant bit of the slave’s data will always be
connected to d0.
Data busses that are not multiples of 8, 16 or 32 bits will have to be –for a processor read- extended to
resp. BYTES, HALFWORDS and WORDS by prepending zero bits.

This implies that the data registers of an 8-bit (or less) slave, seen from the tumbl, will then be
accessible at addresses with their least significant nibbles equal to 3, 7, b or f (hex).

24 MB-Lite+ Example Designs Manual

Data of 16-bit slaves will be located at addresses with least significant nibbles 2, 6, a or e (hex), and of
32-bit at addresses with least significant nibbles 0, 4, 8 or c (hex).
This is accomplished by the address mapping in the dmb_ and wb_adapters given in the release
package. This way, the hardware is very simple at the expense of unusable addresses.
Should this be an issue, then the use of 32-to-8|16 and 8|16-to-32 multiplexers have to be considered.

Other choices would make the results of e.g. simulator output, especially when working with a (signed
or unsigned) decimal data format, more difficult to understand.
If needed, the bSel lines can be used to select individual bytes or combinations of bytes.

It should be clear that always the number of address bits (given in MW_ABITS_g or WB_ABITS_g)
should be enough to handle the number of registers to be accessed.

Figure 5.1 Block diagrams of a) an async or sync
slave interface, and b) a wishbone slave interface

a)

b)

clk_i
rst_i

4

MB_ABITS_g

MB_DBITS_g

MB_DBITS_g

clken
int

ena
bSel
wre

data_i
addr_i

data_o

MB_SLV_Ctrl_i

MB_SLV_Ctrl_o

Xmb_slv_o

Xmb_slv_i

MB_ABITS_g
MB_DBITS_g
DLY_DAV_TICKS_g

Xmb_slave_if

clk_i
rst_i

4

WB_ABITS_g

WB_DBITS_g

WB_DBITS_g

int_o

ack_o

sel_i
we_i

cyc_i
stb_i

data_i
addr_i

data_o

wb_slv_o

wb_slv_i

WB_ABITS_g
WB_DBITS_g

wb_slave_if

Figure 5.2 Address mapping between tumbl and
memory mapped slaves in the dmb_ and wb_adapters.

DMBA_i.addr

4

MB_ABITS_g (=3)

dmb_adapter

addr_o

MB_MST_Ctrl_o.bSel

b30

b2

b2b4

b0

b0

b31

b3

b1

b1

MB-Lite+ Example Designs Manual 25

If the interface’s data registers are located on the same chip as the tumbl, there is no reason why e.g.
setup and hold times would differs from those as in the tumbl hardware itself, so reading and writing
won’t take more than one clock cycle.
Off-chip components usually demand different (longer times are assumed) values for data read/write
operations or for the component’s data becoming valid. This can be dealt with using the generics
SET_UP_TICKS_g, HOLD_TICKS_g and DLY_DAV_TICKS_g that can lengthen these times, expressed in
multiples of clock cycles (see Figure 5.3).
Note that SET_UP_TICKS_g and DLY_DAV_TICKS_g will stall the processor for a number of cycles,
while HOLD_TICKS_g will need the instantiation of a pulse_extender component.

Since a Wishbone slave communicates using a handshake signal (ACK) to signal that it is ready to
accept data or to signal that it outputs valid data on the data bus, such a slave doesn’t need a priori
knowledge about setup and data-valid times. An extended hold time may still be needed.

clk

xmemb_o.addr

xmemb_o.data

xmemb_i.clken

xmemb_o.ena

xmemb_o.wre

pulse_extender output

SET_UP_TICKS_g = 3 HOLD_TICKS_g = 2

t0 t1 t2

minimal tsetup minimal thold
from slave’s datasheet

clk

xmemb_o.addr

xmemb_i.data

xmemb_i.clken

xmemb_o.ena

xmemb_o.wre

DLY_DAV_TICKS_g = 2

maximal tdata-valid

t0 t1

from slave’s datasheet

tumbl read action

Figure 5.3 Examples of specific timing needed for a) writing to, and b) for reading an off-chip component.

a)

b)

data to slave

data from slave

26 MB-Lite+ Example Designs Manual

5.2 Setup of the tumbl_slaves_ex_SoC
In this design example a number of slave emulators will be instantiated that are completely located on
the same FPGA as the tumbl, viz. an asynchronous slave, a synchronous slaves and 3 wishbone slaves.
Non of these contains external connections off-chip.
For each slave all parameters are individually adjustable to investigate all thinkable situations.
Next to that, each slave can be programmed to emulate some kind of “time consuming” operation.

To complete the SoC, the already familiar uart is added, together with a special memory mapped
write-only register intended as a software controllable LED driver.

Figure 5.4 Block diagrams of the tumbl_slaves_ex_SoC
and its testbench.

tumbl_slaves_ex_SoC

clk_ext, rst_btn

tb_SoC

sys_ctrl

IMEM

dm
b_
se
le

ct
or

DMEM

dmb_adapter (as)

dmb_adapter (s)

wishbone_adapter

dmb_adapter (as)

dmb_register

txd
rxd

LEDs

t
u
m
b
l

XMEMB

async
slave

emulator

sync
slave

emulator

uart_AVR8

wishbone
slave

emulator

MB-Lite+ Example Designs Manual 27

5.3 HDL Setup
In the designs/slaves_ex/-directory, the already familiar sys_ctrl.vhd can be recognized,
together with the dedicated top level tumbl_slaves_ex_SoC.vhd (50 MHz clock).

Next to these, the slave emulator files are to be found with a helper package, viz.

 amb_slave_emu.vhd slave emulator with an asynchronous data interface
 smb_slave_emu.vhd slave emulator with a synchronous data interface
 wb_slave_emu.vhd slave emulator with a wishbone interface
 slv_Pkg.vhd package file with component declarations

In contrast to the wb_slave_if in Figure 5.2, the wb_slave_emu here needs an additional generic
WB_DLY_ACK_TICKS_g to indicate its read/write reaction timing properties.

Figure 5.5 Block diagrams of a) the Xmb_slave_emu where X
can be a or s, and b) the wb_slave_emu components.

a)

b)

clk_i
rst_i

4

MB_ABITS_g

MB_DBITS_g

MB_DBITS_g

clken
int

MB_ABITS_g
MB_DBITS_g
DLY_DAV_TICKS_g
DLY_BUSY_TICKS_g

Xmb_slave_emu

ena
bSel
wre

data_i
addr_i

data_o

MB_SLV_Ctrl_i

MB_SLV_Ctrl_o

clk_i
rst_i

4

WB_ABITS_g

WB_DBITS_g

WB_DBITS_g

int_o

ack_o

WB_ABITS_g
WB_DBITS_g
DLY_ACK_TICKS_g
DLY_BUSY_TICKS_g

wb_slave_emu

sel_i
we_i

cyc_i
stb_i

data_i
addr_i

data_o

28 MB-Lite+ Example Designs Manual

Each of the slave emulators contains a number of read/write registers, together with a control (Ctrl)
and a status (Stat) register (see the comment header in the VHDL files and the definitions in the
software .h-files for the details).
As mentioned before, the slaves can simulate being busy with performing an operation that takes a
number of clock cycles, given with DLY_BUSY_TICKS_g.
This can be accomplished by setting a particular Start-bit in Ctrl (see Figure 5.6, writing 01 to
address 00 raises Start_s), after which a counter that has been preset to the value of
DLY_BUSY_TICKS_g (17 decimal here) is decremented until it reaches 0.
This situation can be detected either by polling Stat (address 01, data read 00 when the slave is still
busy, 01 when ready) or by acknowledging the int_o interrupt signal.

More slaves can be busy at the same time, while all register remain accessible.

The dmb_reg (dmb_reg.vhd) that will be used for controlling the LEDs can be found in the
hdl/dmb_ext/-directory.

 Figure 5.7 Block diagrams the dmb_reg component.

clk_i
rst_i

DMBA_i

DMBO_o

32

4

32

MB_DBITS_g

32

clken
 data
 int

MB_DBITS_g
dmb_reg

data_o

ena
addr
bSel
wre
data

Figure 5.6 Showing the emulation of a “busy” slave
for a DLY BUSY TICK g value of 17.

MB-Lite+ Example Designs Manual 29

In the top level tumbl_slaves_ex_SoC.vhd, all generics needed for specifying the circuitry are listed
and given values to be used for synthesis, so it will be very easy to experiment with different settings.

In the example, the data busses for the slaves are deliberately given different values, even not being
multiples of 8-bit widths, to check the truncations and prepending of zeros when transferring data
between the slaves.

The VHDL code describing the slave emulators, can be perfectly used as the starting point for a
real slave interface by deleting and/or rewriting the DLY_ACK_TICKS_g and DLY_BUSY_TICKS_g
dependable parts.

5.4 Software Setup
In the designs/slaves_ex/sw/-directory, the familiar files can be found:

 Makefile input commands for the make utility
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

together with two c-files:

 slaves_ex.c, which is the source file used for synthesis including uart (19200 Bd) output, and
 slaves_ex.c, which is a special version without printout for faster simulation and testing.

Next to these, there is a header file for each of the remaining slaves with information about the
addressing of that particular slave and all other specific information needed, viz.

 amb_slv1.h, smb_slv2.h, wb_slv3.h, wb_slv4.h, wb_slv5.h and dmb_reg.h

In slaves_ex.c and slaves_ex.c rather arbitrary data values are written to slave registers, register
contents are read back and written to other slaves.
Slaves 2 and 3 are instructed to emulate some action (shown with LEDs, see Figure 5.9).
Please, look closely at the comments in these files to see what has to be expected.

5.5 Simulation
The testbench tb_SoC.vhd can be found in the designs/slaves_ex/tb_msim/-directory, as
expected, for generating the clock and the reset stimuli signals, clk_ext_tb and rst_btn_tb
respectively. Furthermore, the values given to the generics here overrule those in tumbl_SoC for
synthesis, and can be used to quickly inspect the effects of different choices.
In designs/slaves_ex/tb_msim/msim/ again, the make_mpf.do, msim.mpf and wave.do (no
optimization to show all signals) for this design can be found.

5.6 Synthesis and Implementation
The synth.prj project file referring to the VHDL files needed for this example is again written in the
designs/slaves_ex/synth/-directory.

30 MB-Lite+ Example Designs Manual

In this particular case, only the slaves_ex.bit file for the LX9 MicroBoard is given due to the lack of
an XC3S200 Development Kit for testing at the moment of writing this part of the manual.
(see designs/slaves_ex/synth/6LX9/).

5.7 Test and Verification
It is advised to have a close look at the simulator output and investigated the effects of different
parameter values.
Shown below are finally a screenshot of the terminal output after programming the FPGA, and the
indications given by the LEDs on the LX9 MicroBoard.

Figure 5.8 Screenshot of a TeraTerm window
showing the output of slaves_ex.bit.

Figure 5.9 LED assignments on LX9 MicroBoard.

reset button pressed done

Slave 2 “busy” Slave 3 “busy”

hardware controlled LEDs

software controlled LEDs

MB-Lite+ Example Designs Manual 31

6 Conclusion

This document described four designs based on an MB-Lite+ processor soft-core.

Example 3 shows the possibility to use the FSL ports for data streaming applications, while Example 4
shows the straight forward way to connect slaves for performing parallel processing tasks.

Except for the last one, all examples have been tested on a Spartan 3 and on a Spartan 6 FPGA, and
the implementations worked as expected.

Regarding the examples shown, next to several designs that have been implemented at the Delft
University of Technology in the past years, it may be concluded that this particular MB-Lite+ version
is a versatile and reliable one.

32 MB-Lite+ Example Designs Manual

Appendix

For completeness, a block diagram showing the ports of the uart_AVR8, that appears in each of the
four design examples, is given below. See the VHDL soc-descriptions for a translation of the port
signals to those of the MB-Lite+ and the uart_AVR8.h header file for the definition of the registers
and the specific bit assignments in these registers.

End of Document End of Document End of Document End of Document End of Document

cp2
ireset

adr

iowe

out_en

txcirq

rxd

udreirq

txd

txc_irqack

rx_en

rxcirq

tx_en

iore

active low

dbus_in
dbus_out

8

3

8

uart_AVR8

Figure A.1 Block diagram of the uart_AVR8.

	1 Introduction
	1.1 Example Designs
	1.1.1 Hello
	1.1.2 SW Test
	1.1.3 Integer-DCT with FSL
	1.1.4 Memory Mapped Slaves and Slave Emulators

	1.2 General Setup of an MB-Lite+ SoC and design
	1.3 Implementation Tree
	1.4 Initial Setup

	2 Hello
	2.1 Top Level HDL Description
	2.2 Software Description
	2.3 Simulation
	2.4 Synthesis and Implementation
	2.5 Final Test

	3 SW Test
	3.1 HDL Setup
	3.2 Software Setup
	3.3 Simulation
	3.4 Synthesis and Implementation
	3.5 Test Results

	4 Integer-DCT with FSL
	4.1 Some Math
	4.2 HDL Setup
	4.3 Software Setup
	4.4 Simulation
	4.5 Synthesis and Implementation
	4.6 Test and Verification

	5 Memory Mapped Slaves and Slave Emulators
	5.1 Some thoughts about slaves
	5.2 Setup of the tumbl_slaves_ex_SoC
	5.3 HDL Setup
	5.4 Software Setup
	5.5 Simulation
	5.6 Synthesis and Implementation
	5.7 Test and Verification

	6 Conclusion
	Appendix

