

Delft University of Technology
Faculty of Electrical Engineering,
 Mathematics and Computer Science
Circuits & Systems Group

Laboratory Exercise for

ET4054
 Methods and Algorithms for System Design

Instruction Manual,
Academic year 2006 - 2007

version msclab2006

Dr.ir. T.G.R van Leuken,
Ing. H.J. Lincklaen Arriëns

Delft University of Technology – EEMCS–CAS

Introduction Laboratory Exercise ET4054

The laboratory exercise will illustrate and teach you to design hardware starting from a ‘high
level’ description of a circuit. Details of the Assignments are given later on in this manual.
A short overview is given here:
We will start with translating a number of circuits in Data Flow Graphs, which consists of
operations, delays and interconnect. Using MATLAB, you can schedule (using various scheduling
methods, resource constraints, resource latencies, etc) the circuit descriptions.
Again, using MATLAB, it is possible to test a circuit whether ‘retiming for minimum clock states’
can result in ‘faster’ circuits.
For each circuit given, Pareto points can be obtained and plotted. You will have to select a ‘best’
circuit that you use for further investigation. The 'best' function in this context can be the smallest,
fastest, or even the most simple implementation.
Still using MATLAB, you will have to simulate the scheduled circuit and calculate output values
depending on user-definable input sequences. These values can be used later on to verify that your
hardware operates correctly.
Another MATLAB program can generate corresponding bit-true VHDL code for the data path and
the controller part of your circuit, together with a so-called testbench. This testbench and circuit
code will have to be simulated with the aid of a VHDL simulator like ModelSim. Evidently, the
outputs of both MATLAB and the VHDL testbench should be in accordance with each other.
The next (optional) step is to synthesize the design using Synplify_Pro. This program will a.o.
generate an EDIF netlist, a schematic diagram of your design and lots of information in its log-
files..

Requirements for the oral exam

For the exam you will have to write a short report, which at least covers the following content:
• prints of the Data Flow Graphs assigned to you, including operations, delays and interconnect

(Also print the values of the input and calculated output variables),
• plots of Pareto curves of the Sequencing Graphs, including scheduling parameters,
• prints of feasible retimed circuits, with Pareto points and resulting Sequencing Graphs,
• a short motivation (textual) for the Scheduled Sequencing Graph selected by you for

simulation,
• a print-out of the simulation results (wave viewer), and
• (optionally) a print-out of the schematic diagram of your design.

Please note, that if you could not completely finish the ET4054 exercise in the given time, this
does not exclude you from participating in the oral exam! In case, for whatever reason, you did
not complete the exercise, show the plots and printouts of those steps that you did accomplish.

- 2 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

Location

The Laboratory room is located on the 16th floor, rooms H16.090 and H16.100. A login should be
enough to access all functions and tools.

Getting Started

You have to obtain a user login name and password first: you will be informed how at where
during the lectures. After login and starting MATLAB for the first time, you will find a file in
your home directory called Assignment2006_praks### that lists your ‘personal assignment’.

You can work at home if you want: in that case you need some MATLAB files, MATLAB itself
(Release 14 or higher), a VHDL simulator such as is e.g. available in the Xilinx WEBPACK MXE
and optionally a synthesizer. Unfortunately, there exists no license-free or student version of the
Synplify_Pro synthesizer that can however be used in the laboratory room.
Instruction can be found in the document Install_Guide_for_Home_Users.pdf on our home page.

Note that you have to login and start MATLAB at least once in the Laboratory room
to obtain your ‘personal assignment’.

Assistance

During lecture hours there will be assistance present in the Laboratory room.

Some more useful information

The home page for this course is in http://ens.ewi.tudelft.nl/Education/courses/et4054

For VHDL: http://www.vhdl-online.de/~vhdl/tutorial/

For VHDL testbenches: http://www.stefanvhdl.com/

For ModelSim: http://www.model.com
 http://www.tkt.cs.tut.fi/software/modeltech/tutorial/

For Synplify: http://www.synplicity.com
http://www.actel.com/documents/synplify_ug.pdf, Chapters 1 − 5

In general: www.google.com

We will maintain a FAQ list on the Circuits&Systems webserver:
 http://ens.ewi.tudelft.nl/Education/courses/et4054/FAQ.pdf

ET4 054: Laboratory Exercise - 3 -

http://ens.ewi.tudelft.nl/Education/courses/et4054
http://www.vhdl-online.de/~vhdl/tutorial/
http://www.stefanvhdl.com/
http://www.model.com/
http://www.tkt.cs.tut.fi/software/modeltech/tutorial/
http://www.synplicity.com/
http://www.actel.com/documents/synplify_ug.pdf
http://www.google.com/
http://ens.ewi.tudelft.nl/Education/courses/et4054/FAQ.pdf

Delft University of Technology – EEMCS–CAS

Contents of this manual

On the next pages, we will give an impression of the ‘design’ of a 5th order FIR filter, following
more or less the same steps that you are also supposed to follow.
Then we introduce a 5th order Cauer (elliptical) filter, from which a set of 16 different Wave
Digital structures are derived which will be the subject of your assignment, which are followed by
the actual assignment.
In the last part of this manual, more detailed descriptions of the structures are given, viz. for each
of them a data-flow block scheme and the accompanying cir-file.

More information about the scheduling programs can be found in the
Reference Guide for the Scheduling Toolbox for MATLAB, version msclab2006, that can be found
on our web page.

For detailed information on the subjects covered in this exercise, see

Synthesis and Optimization of Digital Circuits,
Giovanni De Micheli,
McGraw-Hill, Inc.
ISBN 0-07-113271-6

VLSI Digital Signal Processing Systems,
Keshab K. Parhi,
John Wiley & Sons, Inc.
ISBN 0-471-24186-5

Delft, November 2006.

Dr.ir. T.G.R van Leuken,
Ing. H.J. Lincklaen Arriëns

- 4 - ET4 054: Laboratory Exercise

http://ens.ewi.tudelft.nl/~huib/pubs/msclab2006_RefGuide.pdf
http://ens.ewi.tudelft.nl/~huib/pubs/msclab2006_RefGuide.pdf

 Delft University of Technology – EEMCS–CAS

1. Detailed example of a 5th order FIR filter

In the following, we will give an impression of the design of a simple Finite Impulse Response
(FIR) filter. The block diagram of a 5th order FIR filter is given in Figure 1.1. Such diagrams can
be found in almost any Digital Signal Processing textbooks.

T T TT T
x n[]

y n[]++

c0 c3 c4 c5c1 c2

 Figure 1.1 Block diagram of a 5th order FIR filter.

The filter is made up of several delay elements that are clocked with the sample frequency. The
output of each delay element is individually weighted with a coefficient , and is combined with
the others in a weighted sum. For each input sample x[n], we obtain one output sample y[n].

ic

This can be described mathematically with

 ….. (1.1) ∑
=

−⋅=
5

0

][][
i

i inxcny

For the coefficients to given in Table 1, this filter will show a low-pass transfer function in
the frequency domain as shown in Figure 1.2a.

0c 5c

Table 1.1 coefficients for the 5th order FIR filter

=0c -0.07556556070608

=1c 0.09129209297815
=2c 0.47697917208036

=3c 0.47697917208036

=4c 0.09129209297815

=5c -0.07556556070608

For our laboratory exercise, it is however easier to test the filter in the time domain. It is common
practice to use the well-known unit impulse or unit sample function,][nδ , defined by

 ….. (1.2a)
⎩
⎨
⎧ =

=
.otherwise,0

0for,1
][

n
nδ

and the unit step function, u[n], which is defined by

 ….. (1.2b)
⎩
⎨
⎧

≥
<

=
.0for,1

0for,0
][

n
n

nu

for this purpose.

ET4 054: Laboratory Exercise - 5 -

Delft University of Technology – EEMCS–CAS

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

10
5th Order FIR filter

Frequency / Sample Frequency

M
ag

ni
tu

de
 in

 d
B

Figure 1.2a Magnitude transfer function of the 5th order FIR filter.

-4 -2 0 2 4 6 8 10 12

0

1

Input Step Function

x(
n)

-4 -2 0 2 4 6 8 10 12

0

1

Step Response

sample number

y(
n)

-4 -2 0 2 4 6 8 10 12

0

1

Input Impulse Function

x(
n)

-4 -2 0 2 4 6 8 10 12
-0.2

 0

 0.2

 0.4

 0.6
Impulse Response

sample number

y(
n)

b) c)

Figures 1.2 b and c. Time response of the FIR filter with the magnitude transfer
function given in Figure 2a. The lower plots show the output time samples y[n] for
b) a unit impulse function at the input, and c) for a unit step function at the input.

- 6 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

When we calculate the output values of our filter for these input functions, e.g. by respectively
substituting (1.2a) and (1.2a) in equation (1.1), we obtain Table 1.2.
These values will be used as references when testing our filter implementation. Figures 1.2b and
1.2c also show these signals in a graphical way.

Table 1.2 unit impulse response and unit step response for the 5th order FIR filter

First 10 output samples, when
at a unit impulse
function is applied to the
input:

0=n

 n

First 10 output samples, when
at 0=n a unit step function is
applied to the input:

 -0.07556556070608

 0.09129209297815

 0.47697917208036

 0.47697917208036

 0.09129209297815

 -0.07556556070608

 0

 0

 0

 0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 -0.07556556070608

 0.01572653227208

 0.49270570435244

 0.96968487643279

 1.06097696941095

 0.98541140870487

 0.98541140870487

 0.98541140870487

 0.98541140870487

 0.98541140870487

Given the previous description of our filter, the following steps will be shown next.
1. we will describe the filter in terms of multiplications and additions/subtraction operations,

apart from the delay elements, to obtain a sequencing graph that can be scheduled,
2. using this graph, we will use scheduling software to show the influence of a few different

scheduling methods,
3. we will use a retiming algorithm to investigate whether changing the number and locations of

the delay elements can result in a smaller number of clock-states, and check the resulting
circuit description(s) with the scheduling software,

4. after selecting an appropriate circuit description and scheduling method, we will first use
MATLAB to test the implementation which is derived from the scheduled graph (the SSG) in
a fixed point environment,

5. we will then describe how to translate the scheduled circuit into a VHDL description,
6. we will simulate this VHDL description using the Modelsim timing simulator, and finally,
7. we will show the synthesis results when the VHDL description has been translated by the

Synplify Pro program from Synplicity Inc.

1.1 Description of the filter in a .cir file.

We first have to describe our FIR filter in a way that can be understood by the scheduling
software. The scheduling software translates the operations and calculations so that they can be
implemented on real multipliers and adders/subtractors.
Our scheduling software demands a simple ASCII text file, for which we have defined a number
of rules. The name of the text file should have the extension ‘.cir’.

For an extensive description of the syntax, structure and the thoughts behind a .cir-file, see the
Reference Guide for the Scheduling Toolbox for Matlab (version msclab2006), to be found on
http://ens.ewi.tudelft.nl/Education/courses/et4054/ .

ET4 054: Laboratory Exercise - 7 -

http://ens.ewi.tudelft.nl/Education/courses/et4054/index.php

Delft University of Technology – EEMCS–CAS

First, we have to label the circuit in a way so that we can write all necessary information in the
.cir-file. Therefore, we have to separate the operations that can be scheduled from those that
cannot be scheduled. In our case, we can schedule only multiplications, additions and
subtractions. These resources have to be combined in one block, while we will use input ports and
output ports for connections to delay elements. Figure 1.4 can help in recognizing the parts to be
scheduled (the shaded area) and the input and output ports, while Figure 1.3 shows the meaning of
the several functional block-elements as they are often used in signal processing literature.
Now ‘i0’ is the overall input port of the filter (x[n]) and ‘o5’ the output port (y[n]).
Using the correct syntax and assignment rules, may result in the cir-file shown in Figure 1.5. This
.cir-file, let’s call it ‘FIR5.cir’, will be the input for the scheduling software.

++

++ T-

x1 []n

x1 []n

y n []

y n []

x []n

x []n

x []n

y n []

y n [] = − 1x []n

y n [] = − − 1x []n

x2 []n

x2 []n

k

add: y n n n [] [] []= + x x1 2

subtract: y n n n [] [] []= − x x1 2

ALU functions

(constant) multiplier: k = ∗y n n [] []x

one clock cycle delay

-T

 Figure 1.3 Explanation of the available basis elements.

++

++

++

++ ++

T T TT T

c0 c2 c4c1 c3 c5

i1 i2 i4i0 i3 i5o0 o1 o3o2 o4

o5

v0 v2 v4v1 v3 v5

Figure 1.4 Example of the labeling of the operations, inputs and outputs for the FIR5 filter.

- 8 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

' ' appears only once at the
left hand side of an assignment,
is connected to an operation and
thus is considered to be an
external output

o5

' ' are outputs of the
SSG that are directly connected
to inputs of the SSG and that are
with one sample clock cycle
delay fed back to (other) inputs
of the SSG.

o0 - o4

' ' appears only at the right
hand side of assignments,
and thus is considered to be
an external input

i0

comments are indicated by
starting with a %-sign and
are skipped

The cir-file is the set of all assignments, where
inputs start with an ' ' and can be at the left or right

 hand side of an assignment,
outputs start with an ' ' and are either a result of an

 operation or directly connected to an input,
(constant) coefficients start with an ' ' or a ' ',
SSG-outputs that are registered and fed-back to
SSG-inputs are preceded by a ' '.

.
•

•

•
•

i

o

a c

T

assignments may be optionally terminated with a ' ';

' ' is a one clock cycle delayed version of ' 'i1 o0

Figure 1.5 Example of a .cir-file description for the 5th order FIR filter.

ET4 054: Laboratory Exercise - 9 -

Delft University of Technology – EEMCS–CAS

1.2 Description of the scheduling software.

This software consists of a set of MATLAB programs that can be used as separate functions, to be
called from the MATLAB command window. All functions are provided with help comments,
while a complete description of all function can be found in the Reference Guide
(msclab2006_RefGuide.pdf) that can be downloaded from our web page.
There is also a graphical user interface, schedGUI, which combines a number of the commonly
used functions and eases the comparison of the scheduling methods.
This GUI can be started from the directory in which we have saved our .cir-file. Let’s denote this
directory with <$OUR_CIR_DIR>.
Figure 1.6 shows a screen shot of this schedGUI, with the result when our FIR5 filter should be
scheduled according to the ‘List’ method given the resource constraint that only 2 MULtipliers
and only 1 ALU (which can perform both the add and the subtract calculations) are available.
Both MULtiplier and ALU are supposed to have a latency of only one system clock cycle.
It can be seen that the result of the calculations will be valid after 6 system clock cycles, while
also the distribution of the resources over the clock cycles is shown.
Also can be seen that the GUI expects that 2 additional REGisters will be needed to store
intermediate results. It is important to note that schedGUI expects that the VHDL descriptions of
our MULtiplier and ALU components already provide for a register immediately following the
MULtiplier and the ALU, so that we use registered MULs and ALUs that are clocked at the end of
the clock cycle in which the actual computation is done, and that can store this result until it needs
to be clocked again for storing another result.

Figure 1.6 Screenshot of schedGUI showing the Scheduled
Sequencing Graph (SSG) for our FIR5 filter when a resource constrained
List scheduling method has been applied.

- 10 - ET4 054: Laboratory Exercise

http://ens.ewi.tudelft.nl/~huib/pubs/msclab2006_RefGuide.pdf

 Delft University of Technology – EEMCS–CAS

1.3 Design exploration.

With the xplore-function, it is possible to get information about the design evaluation space for a
specific .cir description. In a plot, area versus minimal delay trade-off points will be shown with
the area of the different resource types (i.e. MULs, ALUs and REGs) as parameter. Combining the
Pareto points for different realizations can lead to an optimized design from a given perspective.

List

 ASAP

 ALAP, Force Directed

Figure 1.7 Design space exploration for the FIR5 filter. It appears that
 −for this particular (, small) circuit− the schedules resulting from the
ALAP and the Force Directed methods are exactly the same.

Figure 1.7 shows the results of executing xplore('FIR5.cir',[2; 1; 0.7]).
For the correct syntax, again, see the Reference Guide or use the help xplore – command.
In this example, the parameter [2; 1; 0.7] is used to define the relative sizes of a
MULtiplier, an ALU and a simple REGister. The values chosen here are strictly arbitrary with the
only intention to obtain a nice picture. In reality, a synthesized multiplier will take much more
area than an ALU. On the other hand, if on e.g. an FPGA dedicated multipliers are available that
are not needed by other parts of a design, the cost factor of a multiplier can be regarded to be zero.

The triplets (x,y,z) next to the black rectangles in Figure 1.7 represent the number of resources for
that particular scheduling choice, viz. respectively the number of MULtipliers, the number of
ALUs and the number of REGisters (this value includes the feedback registers, the registers
needed inside the SSG for lifetime extension of intermediate computational results, and registers
after each external input and before each external output) needed.

Note: the List scheduling method is sensitive for the sequence in which the assignments appear in
the .cir file.

ET4 054: Laboratory Exercise - 11 -

Delft University of Technology – EEMCS–CAS

1.4 Retiming.

Given the data-flow graph of our FIR5 filter in
Figure 1.8, is it possible −without affecting the
input/output characteristics of the circuit− to
reduce the minimum number of cycles needed
to obtain output results?

To answer this question, the MATLAB function
retime_minCycles(filename) is available.

Figure 1.8 Data-flow graph obtained
 with view_DFG('FIR5.cir')

If a retiming for cycle minimization turns out to be feasible, actions to be taken are written to the
command window. Next to that a new .cir-file will be written in the working directory that reflects
the retimed circuit. This .cir-file, the name of which is mentioned on screen, can be the source for
further explorations.
The process stops when no further reductions can be realized.
Shown below are the first results when retime_minCycles('FIR5.cir') will be executed.

 Retiming possible to decrease longest path to 3 state(s)
 NOTE: Output will be delayed 1 additional 'sample'cycle(s)
 Actions needed:
 Change 1T delay from i3 to v4 into a 2T delay.
 Change connection from v0 to s1 into a 1T delay.
 Change connection from v1 to s1 into a 1T delay.
 Change connection from v2 to s2 into a 1T delay.
 Change connection from v3 to s2 into a 1T delay.

 Created file 'FIR5_3cyc.cir' for this retimed circuit ...

Figure 1.9a Data-flow graph of 'FIR5_3cyc.cir'

- 12 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

 Retiming possible to decrease longest path to 2 state(s)
 Actions needed:
 Change connection from v4 to s3 into a 1T delay.
 Change connection from v5 to s3 into a 1T delay.
 Change connection from s1 to s4 into a 1T delay.
 Change connection from s2 to s4 into a 1T delay.

 Created file 'FIR5_2cyc.cir' for this retimed circuit ...

 Retiming possible to decrease longest path to 1 state(s)

Figure 1.9b Data-flow graph of 'FIR5_2cyc.cir'

--- aborted here ---

Note that the underlying retiming algorithm stops when it finds a solution that satisfies its goal,
viz. a reduction in cycles. This doesn’t necessarily mean that the registers are inserted in the most
efficient way. For the FIR5 circuit here (adders and multiplications having the same latency), it
turns out to be possible to obtain solutions that ‘looks nicer’ (Figure 1.10a) or that use less
registers (Figure 1.10b) .

b)

a)

Figure 1.10 a) Functionally equivalent realization of Figure 1.9a after relocating 2 delay elements, and
 b) equivalent realization of Figure 1.9b after combining 2 delay elements.

ET4 054: Laboratory Exercise - 13 -

Delft University of Technology – EEMCS–CAS

1.5 A MATLAB testbench.

The purpose of this testbench is to provide reference data that can be used to verify the VHDL
output with. Testing and working with MATLAB is much easier and faster, and far less error
prone, then starting with VHDL immediately, unless –maybe– you are a very experienced VHDL
programmer.

A very important issue to note is that the VHDL definitions of the MUL, ALU and REG entities
are working with fixed-point data and fixed-point arithmetic, in contrary with the floating-point
computations that we have used so far.
It is a bit too complex and area consuming to work with floating-point arithmetic in this
application, and also –given the limited dynamic range– not a requirement. In practice, most of the
commercial DSP applications work with some kind of fixed-point format anyhow.
The MATLAB testbench adheres to this fixed-point format.

Suppose that we are satisfied with the result of a particular scheduling method, and that we want
to implement that circuit. Since we will be working with fixed-point hardware for our
computations, we will have to establish first with how many bit lines we will have to represent our
coefficients and input and output values in order to meet our accuracy constraints. For this
purpose the MATLAB function gen_mTB can be used, which results in a MATLAB testbench that
simulates the final VHDL implementation using the same fixed-point arithmetic.
Here, no accuracy constraints are given, and we opt for a representation with 15 fractional bits.
See the Reference Guide for a short description concerning signed fixed-point arithmetic and our
notation of bus width, number of fraction bits, etc.
Suppose we want to see the filter’s behavior when a step function is applied at the input.
From Figure 1.2c and Table 1.2, it can be seen that the step response at the output exceeds the
value of +1.0 (for sample number 4). This implicates that we need at least 2 bits to represent the
signed integer part of this value, so we will use a [17 15] signed fixed-point notation here for
our coefficients and in/outputs.
The MATLAB testbench (also the VHDL testbench that will be used later on) expects to read its
input values from a .INP-file, a description of which is given in Appendix C. In this .INP-file, the
constant coefficients should be defined first, followed by the input samples, line by line.
The utility gen_INP is intended to automate the creation of such an .INP-file.

Start however with running from <$OUR_CIR_DIR>

 >> gen_mTB(‘FIR5.cir’, 1, ‘list’, 1,1, 2,1);

since this will notify you in which order the coefficients should be listed in the .INP-file.
gen_mTB creates a sub-directory FIR5/matlab under <$OUR_CIR_DIR> in which it will write
its testbench files. These testbench files consist of (see the Reference Guide)
 testbench_FIR5_auto.m, FIR5_SSG_auto.m, MUL.m and ALU.m.
These should be completed with the .INP-file mentioned before, e.g. by issuing

 >> gen_INP(‘FIR5/matlab/FIR5.INP’, [17 15], coeffs, ones(1,10));

where coeffs is a cell-array containing the names and the values of the coefficients as
were given in Table 1.1.

50 cc L

For this example, the coefficient data has been stored in a file coeffs_FIR5.mat. Use

 >> load coeffs_FIR5.mat

first, to retrieve the coeffs cell-array into MATLAB’s workspace.

- 14 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

Running, from the sub-directory <$OUR_CIR_DIR>/FIR5/matlab (alternatively, add it to
MATLAB’s path definition)

 >> testbench_FIR5_auto([17 15 0], 1, 0);

will perform the simulation and write the results to the screen as well as to a file FIR5.OUT.
If the last ‘0’ parameter is changed in a ‘1’, full debug information will be presented.
In case of doubt which syntax to use, see testbench_FIR5_auto.m’s own help function.
FIR5.OUT is a file in a specific hex-format, which can be translated into decimal format using the
function read_OUT.m.
Note that the fixed-point parameter format that testbench_FIR5_auto works with, needs a
third parameter which defines a number of additional bits with which the integer part of the fixed-
point computations inside the SSG-part need to be expanded. It will be surely possible that
intermediate results that occur inside the computational process will be greater than, or more
negative than, the values that can be represented with the number of bits needed for input and
output values.
In this example, no additional bits are needed, so the third value can be a zero.

It is obvious that we can only proceed when this testbench performs without any errors, and
results in the expected output values (regarding the effects of the quantization errors caused by the
limited number of bits).
Table 1.3 lists the values obtained with read_OUT, for the input sequence [0 0 1 1 1 · · · 1 1 1].

Table 1.3 result of read_OUT for u[n-2]

 1: x"00000" = 0.00000000000000

 2: x"00000" = 0.00000000000000

 3: x"00000" = 0.00000000000000

 4: x"1F654" = -0.07556152343750

 5: x"00203" = 0.01571655273438

 6: x"03F11" = 0.49270629882813

 7: x"07C1F" = 0.96969604492188

 8: x"087CE" = 1.06097412109375

 9: x"07E22" = 0.98541259765625

 10: x"07E22" = 0.98541259765625

 11: x"07E22" = 0.98541259765625

 12: x"07E22" = 0.98541259765625

 13: x"07E22" = 0.98541259765625

It can be checked that the maximum absolute difference between these output values and the
reference values is about . 51012.1 −⋅

1.6 The VHDL testbench.

Now, we can use (from the <$OUR_CIR_DIR>-directory again),

>> gen_VHD(‘FIR5.cir’, [17 15 0], 1, ’list’, 1,1, 2,1);

to generate the vhdl design files and the vhdl testbench files, respectively named
 resources_reg.vhd, FIR5_SSG_auto.vhd, FIR5_auto.vhd and
 testbench_FIR5_auto.vhd and txt_util2.vhd.

These files will have been written in the sub-directory <$OUR_CIR_DIR>/FIR5/vhdl/.

ET4 054: Laboratory Exercise - 15 -

Delft University of Technology – EEMCS–CAS

entity FIR5_SSG is
generic (NX_g : positive := 16;
 M_g : positive := 15;
 MUL_delay_g : Time := 5 ns;
 ALU_delay_g : Time := 2 ns;
 REG_delay_g : Time := 2 ns);
port (clk : in std_logic;

 reset : in std_logic;
 start : in std_logic;
 c0 : in std_logic_vector(NX_g-1 downto 0);
 c1 : in std_logic_vector(NX_g-1 downto 0);
 c2 : in std_logic_vector(NX_g-1 downto 0);
 c3 : in std_logic_vector(NX_g-1 downto 0);
 c4 : in std_logic_vector(NX_g-1 downto 0);
 c5 : in std_logic_vector(NX_g-1 downto 0);
 i0 : in std_logic_vector(NX_g-1 downto 0);
 i1 : in std_logic_vector(NX_g-1 downto 0);
 i2 : in std_logic_vector(NX_g-1 downto 0);
 i3 : in std_logic_vector(NX_g-1 downto 0);
 i4 : in std_logic_vector(NX_g-1 downto 0);
 i5 : in std_logic_vector(NX_g-1 downto 0);
 o0 : out std_logic_vector(NX_g-1 downto 0);
 o1 : out std_logic_vector(NX_g-1 downto 0);
 o2 : out std_logic_vector(NX_g-1 downto 0);
 o3 : out std_logic_vector(NX_g-1 downto 0);
 o4 : out std_logic_vector(NX_g-1 downto 0);
 o5 : out std_logic_vector(NX_g-1 downto 0);
 done : out std_logic;
 error : out std_logic

);
end FIR5_SSG;

all SSG inputs

constant coefficients

all SSG outputs

buswidth inside SSG
 NX is (N + x) bits

default settings, overruled by
(user) settings in the
FIR5 entity

 [17 15 0]

entity FIR5 is
generic (N_g : positive := 17;
 M_g : positive := 15;

port (Clk : in std_logic;
 Reset : in std_logic;
 Start : in std_logic;
 C0 : in std_logic_vector(N_g-1 downto 0);
 C1 : in std_logic_vector(N_g-1 downto 0);
 C2 : in std_logic_vector(N_g-1 downto 0);
 C3 : in std_logic_vector(N_g-1 downto 0);
 C4 : in std_logic_vector(N_g-1 downto 0);
 C5 : in std_logic_vector(N_g-1 downto 0);
 I0 : in std_logic_vector(N_g-1 downto 0);
 O5 : out std_logic_vector(N_g-1 downto 0);
 Done : out std_logic;
 Error : out std_logic

);
end FIR5;

NX_g : positive := 17);
 MUL_delay_g : Time := 5 ns;

 ALU_delay_g : Time := 2 ns;
 REG_delay_g : Time := 2 ns);

buswidth of external I/O
 N bits

constant coefficients

external input(s)

external output(s)

user defined settings

Figure 1.11 Listing of the entities FIR_5 and FIR5_SSG.

- 16 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

In here resources_reg.vhd contains the definitions of

• the registered multiplier with synchronous reset and clock enable (MUL_R),
• the registered ALU with synchronous reset and clock enable (ALU_R) that use the signal

OPCODE to discriminate whether the input values have to be added or subtracted
(OPCODE = OP_ADD | OP_SUB) . There is also overflow, an additional output signal that
goes high in case of an overflow error. And,

• the entity REG_R, which is a register with clock-enable and synchronous reset.

For simulation purposes, these entities show generic delays that are overruled when latencies other
than 1 are assigned when calling gen_VHD.

The file txt_util2.vhd contains a.o. the code needed to perform file access and to read and
write hexadecimal values.

Finally, FIR5_SSG_auto.vhd, FIR5_auto.vhd and testbench_FIR5_auto.vhd are the
descriptions of the circuit and its test environment in increasing hierarchy level.
Figure 1.11 lists the entity definitions of FIR5_SSG and FIR5. FIR5_SSG is instantiated as a
component inside FIR_5’s architecture.
Notice that the feedback registers in FIR5_auto.vhd are inferred automatically (instead of by
inserting REG components) by the way in which the VHDL code is written.
All files mentioned, together with the .INP-file, are needed for the simulation.

During its run, gen_VHD(_template) generates a couple of plots, in which it shows the
mapping of the operations on the two MULs and single ALU, and where exactly it needs the two
additional registers (see Figure 1.12).

Figure 1.12 The Resource mapping and Registry binding as reported by gen_VHD.

ET4 054: Laboratory Exercise - 17 -

Delft University of Technology – EEMCS–CAS

- 18 - ET4 054: Laboratory Exercise

1.7 Simulation results.

Figure 1.13 shows the Wave window that
can be obtained by running the VHDL files
through the ModelSim simulator. All in-
and output signals of the FIR5 block are
shown here.
See the Reference Guide for an
explanation of the stimuli signals and time
steps that are used for the simulation.

Comparison of the FIR5.OUT-files written
by the MATLAB and the VHDL test-
benches reveals that they are completely
identical (except for the comment lines),
from which can be concluded that the
MATLAB and VHDL simulations show a
bit true (and at the STATES level also a
cycle true) correspondence.

Figure 1.13 Waveform output of the FIR5 vhdl
design after simulation with ModelSim.

http://ens.ewi.tudelft.nl/~huib/pubs/msclab2006_RefGuide.pdf

 Delft University of Technology – EEMCS–CAS

1.8 Synthesis results.

In Figure 1.14, the result of a synthesis run for subsequently lower architectural levels is given.
As target device for the implementation was chosen a Xilinx FPGA from the Spartan family, the
XC3S2000. The devices from the Spartan family are equipped with dedicated, ready-to-use 18
by 18 bit multipliers; the XC3S2000 even offers 40 of them. In fact, these multipliers can also be
configured as a multiplier with a clocked, clock enabled, resetable registered output, exactly as
had been described before. The VHDL definition of MUL_R in resources_reg.vhd is such, that
these registered versions will be selected by the synthesizer.

Figure 1.14a RTL view of the synthesized FIR5 top level
 as drawn by Synplify_Pro.

ET4 054: Laboratory Exercise - 19 -

Delft University of Technology – EEMCS–CAS

- 20 - ET4 054: Laboratory Exercise

the ALU

MUL_1

MUL_2

two additional registers

“state machine”

Figure 1.14b RTL view inside the FIR5_SSG-block.

 Delft University of Technology – EEMCS–CAS

Figure 1.14c RTL view of MUL_R.

Figure 1.14d RTL view of ALU_R.

Figure 1.14e RTL view of REG_R.

ET4 054: Laboratory Exercise - 21 -

Delft University of Technology – EEMCS–CAS

2. A 5th order Cauer low-pass filter.

For the purpose of this laboratory exercise, we have chosen an implementation of a more complex
5th order filter, the magnitude response function of which is given in Figure 2.1.
For those who are interested: it is a 5th Cauer filter (in the American literature commonly referred
to as an elliptical filter), with an equiripple passband showing a ripple of maximally 0.1 dB and a
stopband (also equiripple) always below or equal to –45 dB. The –3dB cutoff frequency is
positioned at 0.34 of the sample frequency.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-80

-70

-60

-50

-40

-30

-20

-10

0

10
5th Order Cauer (elliptical) filter

Frequency / Sample Frequency

M
ag

ni
tu

de
 in

 d
B

Figure 2.1a Magnitude transfer function of the 5th order Cauer filter.

The filter can be described with its transfer function

j

j
j

i

i
i

za

zb
zH

−

=

−

=

∑

∑
= 5

0

5

0)(….. (2.1)

or alternatively with its outputs sequence

 ….. (2.2) ∑∑
==

−⋅−−⋅=
5

1

5

0

][][][
j

j
i

i jnyainxbny

so again sums of products, but this time with feedback of the output samples. Table 2.1 shows the
coefficient values belonging to the characteristic of Figure 2.1a.
It is surely possible to create a structure that shows a resemblance with the FIR filter shown
earlier. In fact, many different architectures have been studied in the literature to implement this
kind of transfer functions. We will choose here for an implementation in the form of a Wave

- 22 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

Digital Filter (WDF). This type of filter implementations show outstanding stability and accuracy
properties, although they may look a little bit complicated. For our scheduling purposes, however,
this is a nice side effect.

Table 2.1 coefficient for the 5th order Cauer filter of Figure 2.1

0b 0.20391160908339 0a 1.00000000000000

1b 0.87047736117673 1a 1.47740114108676

2b 1.61565809470470 2a 1.72643982821984

3b 1.61565809470470 3a 0.82548383012058

4b 0.87047736117673 4a 0.34088842960612

5b 0.20391160908339 5a 0.00988090089635

When this filter is described in the time domain, again with a unit impulse response and a unit step
response, we obtain the output sample values given in Table 2.2.
For completeness, Figures 2.1b and c show these responses in graphical format.

Table 2.2 unit impulse response and unit step response

First 17 output samples, when
at a unit impulse
function is applied to the
input:

0=n

 n

First 17 output samples, when
at 0=n a unit step function is
applied to the input:

 0.20391160908339

 0.56921811723610

 0.42265347541487

 -0.15981719677043

 -0.16248578323008

 0.17493475418864

 0.00429756663652

 -0.12393053401583

 0.08823847261738

 0.02201969023977

 -0.08576118081758

 0.05805258511653

 0.01526273551051

 -0.06035714314809

 0.04391746724945

 0.00777806140658

 -0.04326483749048

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0.20391160908339

 0.77312972631949

 1.19578320173436

 1.03596600496393

 0.87348022173384

 1.04841497592248

 1.05271254255900

 0.92878200854316

 1.01702048116054

 1.03904017140032

 0.95327899058273

 1.01133157569926

 1.02659431120977

 0.96623716806168

 1.01015463531113

 1.01793269671771

 0.97466785922723

It can be seen that the step response is the cumulative sum of the impulse response values. This, in
fact, should be the case, since the unit step function is also the cumulative sum of the unit impulse
function, and our filter is a linear system.

ET4 054: Laboratory Exercise - 23 -

Delft University of Technology – EEMCS–CAS

0 5 10 15 20

0

1

Input Impulse Function

x(
n)

0 5 10 15 20
-0.5

 0

 0.5

 1
Impulse Response

sample number

y(
n)

0 5 10 15 20

0

1

Input Step Function

x(
n)

0 5 10 15 20

0

1

Step Response

sample number

y(
n)

Figure 2.1c Step response of the 5th order Cauer filter.

Figure 2.1b Impulse response of the 5th order Cauer filter.

- 24 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

2-port and 3-port adapters

The different WDF filter structures that we will investigate are all constructed with the aid of so-
called 2-port and 3-port adaptors, combined with delay elements.
The symbols that are commonly used, and the block schemes what is really inside of them, are
shown in Figures 2.2 and 2.4a to d. Notice that they are again build up using multipliers and
adders. In the block schemes, we also notice the presence of negations (∗ −1), but in almost any
case these can be combined with an adder to form a subtractor. This reduces the number of
resources.
Also, each adaptor shows to comprise at least one constant coefficient multipliers, with a
coefficient α, 1α or 3α .

A2

A1

B1

B2

1 2

-1

α

A1 A2

B1
B2

-1

-α1

A1 A2

B1 B2

11 αα −=

c) b)

a)

 Figure 2.2 Symbol a), and two functionally equivalent realization schemes b) and c) for a

 ‘2 port adaptor’

In Figures 2.5a and b, 2.6a and b, 2.7a and b and 2.8a and b, twelve different structures are given
that all realize exactly the same transfer function. In fact, each of these Wave Digital Filters not
only realizes the low-pass transfer function of Figure 2.1a from input Ain (input data x[n]) to
output Bfwd (output samples y[n]), but also a ‘reflection’ function from Ain to output Brev that will
show a high-pass magnitude transfer function. Here, we will focus ourselves to the forward output
only.

Figures 2.9a and b show even four more implementations, again of the same transfer functions
and also derived using the wave digital filter theory, but with a completely different architecture.
These implementations are called Lattice Wave Digital Filters (LWDFs) and are realized using
only 2-port adapters, again delay elements, two more adders/subtractors and two divide-by-2
functions at the outputs.

ET4 054: Laboratory Exercise - 25 -

Delft University of Technology – EEMCS–CAS

 A2

A1

B1

B3

A3

B2

A2

A1

B1 B3

A3

B2

1− 1−

B3

A2

A1

B1

A3

B2

A2

A1

B1

B3

A3

B2

A2

A1

B1

A1

B1

B3

A3

B2

1

2

3

A2

A1

B1B1

B3

A3

B2

1

2

3

A2

A1

B1

A1

B1

B3

A3

B2

1

2

3

A2

A1

B1B1

B3

A3

B2

1

2

3

Figure 2.3c Symbol and Block scheme for a ‘matched 3 port serial adaptor’

Figure 2.3b Symbol and Block scheme for a ‘3 port parallel adaptor’

Figure 2.3a Symbol and Block scheme for a ‘matched 3 port parallel adaptor’

Figure 2.3d Symbol and Block scheme for a ‘3 port serial adaptor’

- 26 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

In the block schemes to follow, when 2-ports are present, there are actually two distinct
possibilities to locate the interconnecting delay element. The transfer function from input to
output(s) stays exactly the same. Of course the positioning does influence the data flow paths, so
from the scheduling point of view there can be a preference to choose one or the other.
In the block schemes, the two circuits are simply differentiated using the postfix _L or _R at the
end of the (file)name.

T T

T T

1

2

1

2

1

2

3 1

2

3

Figure 2.4 Two possible positions for the interconnecting delay element.

The names given here to the WDF structures are intended to be self-explanatory:

• an ‘s’ or ‘p’ is used to indicate that the input 3-port adapter is a serial or parallel type,
• if this is followed by ‘sym’, the setup of the 3-port adapters in the lower row is symmetric, i.e.

the 2-multiplier-adapter is in the middle (possible here, because we have an odd order filter).
If not symmetric, this adapter is positioned as the forward-output one.

• a ‘2p’ or ‘3p’ indicates whether the structure is built using respectively a combination of 2-
port and 3-port adapters, or with only 3-port adapters.

• of course, if 2-port adapters are being used, the ‘2p’ is followed by an indication about the
location of the interconnecting delay element (see above, either ‘L’ or ‘R’).

ET4 054: Laboratory Exercise - 27 -

Delft University of Technology – EEMCS–CAS

T T−T −T −T

T T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .G α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

1

2

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

−1

A1α 0.61567453576615

B1α 1.88239554055869

C1α 0.46968595194661

D1α 0.43378869238454

E1α 1.75205223583238

F1α 0.52818356937584

G1α 0.76350613851909

G3α 0.82195774820984

A1α 0.61567453576615

B1α 0.94119777027934

C1α 0.46968595194661

D1α 0.43378869238454

E1α 0.87602611791619

F1α 0.52818356937584

G1α 0.76350613851909

G3α 0.82195774820984

Figure 2.5b ‘WDF_C5_s_3p’

Figure 2.5a ‘WDF_C5_s_2p_L’ and ‘WDF_C5_s_2p_R’

−T −T −T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .G α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

−1

T T

−T −T

1 1

2 2

3 3

- 28 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

T T

−T −T

T T T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .G α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

1

2

1

2

3 1

2

3 1

2

3 1

2

31

2

3

−1

A1α 0.61567453576615

B1α 0.11760445944132

C1α 0.46968595194661

D1α 0.43378869238454

E1α 0.24794776416762

F1α 0.52818356937584

G1α 0.76350613851909

G3α 0.82195774820984

A1α 0.61567453576615

B1α 0.05880222972066

C1α 0.46968595194661

D1α 0.43378869238454

E1α 0.12397388208381

F1α 0.52818356937584

G1α 0.76350613851909

G3α 0.82195774820984

Figure 2.6b ‘WDF_C5_p_3p’

Figure 2.6a ‘WDF_C5_p_2p_L’ and ‘WDF_C5_p_2p_R’

T T T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .G α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

3 1

2

3 1

2

3 1

2

31

2

3

−1

T T

−T −T

1 1

2 2

3 3

ET4 054: Laboratory Exercise - 29 -

Delft University of Technology – EEMCS–CAS

T T−T −T −T

T T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .D α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

1

2

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

−1

Figure 2.7a ‘WDF_C5_s_sym_2p_L’
 and ‘WDF_C5_s_sym_2p_R’

A1α 0.61567453576615

B1α 1.88239554055869

C1α 0.46968595194661

D1α 0.58427183716240

D3α 0.65309574126830

E1α 1.75205223583238

F1α 0.56685999288327

G1α 0.66474874952101

A1α 0.61567453576615

B1α 0.94119777027934

C1α 0.46968595194661

D1α 0.58427183716240

D3α 0.65309574126830

E1α 0.87602611791619

F1α 0.56685999288327

Gα 0.66474874952101

−T

A .A 1α

A .B α1

Ain

Brev

1

2

3

- 30 -
Figure 2.7b ‘WDF_C5_s_sym_3p’

1

−T −T

A .D α1A .C α1 A .F α1

A .E α1

A .D α3

A .G α1

Bfwd

A3 = 0

1

2

3 1

2

3 1

2

3 1

2

3

−1

T T

−T −T

1 1

2 2

3 3

 ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

T T

−T −T

T T T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .D α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

1

2

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

−1

A1α 0.61567453576615

B1α 0.11760445944132

C1α 0.46968595194661

D1α 0.58427183716240

D3α 0.65309574126830

E1α 0.24794776416762

F1α 0.56685999288327

G1α 0.66474874952101

A1α 0.61567453576615

B1α 0.05880222972066

C1α 0.46968595194661

D1

Figure 2.8a ‘WDF_C5_p_sym_2p_L’
 and ‘WDF_C5_p_sym_2p_R’

α 0.58427183716240

D3α 0.65309574126830

E1α 0.12397388208381

F1α 0.56685999288327

G1α 0.66474874952101

Figure 2.8b ‘WDF_C5_p_sym_3p’

T T T

A .A 1α A .D α1A .C α1 A .F α1

A .B α1 A .E α1

A .D α3

A .G α1

Ain

Brev

Bfwd

A3 = 0

1

2

3 1

2

3 1

2

3 1

2

3 1

2

3

−1

T T

−T −T

1 1

2 2

3 3

ET4 054: Laboratory Exercise - 31 -

Delft University of Technology – EEMCS–CAS

Coefficients for both
‘LWDF_5_L|R’ and
‘LWDF_5_T_L|R’.

A1α -0.03119210537118

B1α -0.82935592147589

B2α -0.52095844720462

C1α -0.38195386087389

C2α -0.35687921966298

Figure 2.9b ‘LWDF_5_T_L’
 and ‘LWDF_5_T_R’

Figure 2.9a ‘LWDF_5_L’
 and ‘LWDF_5_R’

T

T

T

T

T

α1A

α1C

α2C

α1B

α2B

Ain

Brev

1

2

1

2

1

2

1

2

1

2

Bfwd

−1 ½

½

section A

section C

section B

T

T

T

T

T

T

T

α1A

α1C

α2C

α1B

α2B

Ain

Brev

1

2

1

2

1

2

1

2

1

2

Bfwd

−1 ½

½

section A

section C

section B

- 32 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

Assignments 2006/2007.

For this Laboratory Exercise, you are expected to investigate and compare a number of
computational ciccuits with respect to scheduling and retiming possibilities. For one of them you
also have to create and run the MATLAB and VHDL testbenches.
If you got time to spare, you can synthesize the VHDL code with Synplify_Pro and test the
retiming function available inside Synplify_Pro.

All files that have been used for the FIR5 example in this manual will be available to you.

In more detail:

Each one of you will be assigned a selection of 5 circuits/structures from the Figures 2.5a/b to
2.9a/b. The structures from 2.9a and 2.9b (which is a pipelined version of 2.9a) are always part of
this set, the other 3 are chosen more or less randomly. For all structures, the .cir-files have been
created beforehand, as are the coefficients-data. This data will be present in your start-up
directory. The files can be identified by the names given in the Figure captions.
As mentioned before, the .cir-files are plain ASCII text files that can be read or edited with the
text editor of your choice. The given .cir-files are optimized in such a way that negations are
avoided.

• We want you to investigate and compare the structures assigned to you in terms of scheduling

properties using e.g. the schedGUI program, and to formulate your own conclusions.
Determine and plot a number of Pareto points using these designs (viz. time or clock cycles
vs. area plots). For simplicity, assume that all resource types need the same amount of chip
area.
Figure out which of the circuits (only those that are assigned to you) can be retimed (use
delayMUL = delayALU = 1) and find out why (or why not).
What is to be preferred: a _L or a _R realization?
Optionally take a look at the effects of different latencies of the resources.

• Next, select one of the assigned circuits, substantially based on your conclusions, and generate

a MATLAB testbench for it. Run the testbench with different .INP-files, where each .INP-file
represents a different fixed-point format. Be sure to use the correct coeffs data format and
sequence in the .INP-file.

The coefficient data is available as .mat-files that you can import in MATLAB with the command

 >> load coeffs_NAME

The result will be that you can access a cell-array variable coeffs from your MATLAB console that
has in its first column the names of the variables and in its second column the corresponding
values.

• If you are satisfied with a certain format and the resulting accuracy, generate the VHDL files

and testbench for this structure.

• Then, use the ModelSim simulator to check your code and to verify that this VHDL testbench

returns the same output values as you found with the MATLAB testbench. In case of
discrepancy problems, be reminded that the MATLAB testbench can be run in a “debug”-
mode to show all intermediate results, which you can compare with intermediate results
returned by the simulator. In the Reference Guide, a description of the timing used for the
stimuli in the VHDL testbench can be found.

ET4 054: Laboratory Exercise - 33 -

Delft University of Technology – EEMCS–CAS

• If all goes well, and you have some time left or are just curious, run the appropriate (see the

Reference Guide) VHDL files with Synplify_Pro and identify the various components in the
RTL view results.
Run the synthesis with and without enabling the internal Retiming (you get Pipelining for
free) option and determine from the log-files whether this will have effect on the estimated
maximum frequency that the design is expected to work with and explain your findings (what
has been changed by this option, why is that possible, etc.)

Already mentioned in the introduction, but repeated here for your convenience:

For the exam you will have to write a short report, which at least covers the following content:
• prints of the Data Flow Graphs assigned to you, including operations, delays and interconnect

(Also print the values of the input and calculated output variables),
• plots of Pareto curves of the Sequencing Graphs, including scheduling parameters,
• prints of feasible retimed circuits, with Pareto points and resulting Sequencing Graphs,
• a short motivation (textual) for the Scheduled Sequencing Graph selected by you for

simulation,
• a print-out of the simulation results (wave viewer), and
• (optionally) a print-out of the schematic diagram of your design.

 - - - - - - - - - - - - - - - -

- 34 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

Appendix.

Architecture descriptions for the Wave Digital Filter implementations.

For each of the structures in Figs. 2.5 – 2.9, a flow diagram and the cir-file that describes that flow
diagram are given:

 WDF_C5_s_2p_L pages 36-37
 WDF_C5_s_2p_R 38-39
 WDF5_C_s_3p 40-41

 WDF_C5_p_2p_L 42-43
 WDF_C5_p_2p_R 44-45
 WDF_C5_p_3p 46-47

 WDF_C5_s_sym_2p_L 48-49
 WDF_C5_s_sym_2p_R 50-51
 WDF_C5_s_sym_3p 52-53

 WDF_C5_p_sym_2p_L 54-55
 WDF_C5_p_sym_2p_R 56-57
 WDF_C5_p_sym_3p 58-59

 LWDF_5_L 60-61
 LWDF_5_R 62-63

 LWDF_5_T_L 64-65
 LWDF_5_T_R 66-67

All data that follows has been created with the (L)WDF Toolbox for MATLAB (developed at the
TU Delft). The interested reader can find more about this toolbox at
http://ens.ewi.tudelft.nl/~huib/mtbx/more_wdfs.php

RS L1

L2

C2

L3

L4

C4

L5

RL

The WD-filters are translations in the time-discrete domain of the dual, time-continuous low-pass
realizations shown below.

In the LWD-filters, the transfer function to be realized is obtained by combining (adding for low-
pass, subtracting for high-pass) two all-pass transfer functions that differ in phase in the correct
way.

RS

C1

L2

C2
C3

L4

C4
C5 RL

ET4 054: Laboratory Exercise - 35 -

http://ens.ewi.tudelft.nl/~huib/mtbx/more_wdfs.php

Delft University of Technology – EEMCS–CAS

- 36 - ET4 054: Laboratory Exercise

WDF_C5_s_2p_L: data-flow diagram

v1
A

v1
D

v1
G

v1
B

v1
E

v1
C

v1
F

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

o1
C

o1
F

i1
B

i1
E

v2
A

v2
D

v2
G

v2
B

v2
E

v3
A

v3
D

v5
G

v3
B

v3
E

v4
A

v4
D

v4
G

m
1A

m
1D

m
1G

m
3G

m
1B

m
1E

m
1C

m
1F

o1
A

o1
D

o1
G

i1
A

i1
D

i1
G

o2
B

o2
E

i2
B

i2
E

o_
re

v

in
p

o_
fw

d

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:36:19.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "-" in top row
o1A = v3A;
i1A = To1A;
% bottom row 3p adaptor, type s1m_ppp_pii
v1A = inp - m1A;
v2A = inp + i1A;

WDF_C5_s_2p_L.cirv3A = v1A + v2C;
v4A = v2A + v2C;
m1A = a1A * v4A;

o_rev = v1A;

% top row 2p adaptor, serial resonator
o1C = v4C;
i1B = To1C;
v1B = i2B - i1B;
m1B = a1B * v1B;
v2B = i2B - m1B;
o2B = v2B;
i2B = To2B;
v3B = v1B + v2B;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1C = v2A + v3B;
v2C = v1C + v4C;
m1C = a1C * v1C;
v3C = v3B - m1C;
v4C = v1D - m1C;

% "-" in top row
o1D = v3D;
i1D = To1D;
% bottom row 3p adaptor, type s1m_ppp_pii
v1D = v3C - m1D;
v2D = v3C + i1D;
v3D = v1D + v2F;
v4D = v2D + v2F;
m1D = a1D * v4D;

% top row 2p adaptor, serial resonator
o1F = v4F;
i1E = To1F;
v1E = i2E - i1E;
m1E = a1E * v1E;
v2E = i2E - m1E;
o2E = v2E;
i2E = To2E;
v3E = v1E + v2E;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1F = v2D + v3E;
v2F = v1F + v4F;
m1F = a1F * v1F;
v3F = v3E - m1F;
v4F = v1G - m1F;

% "-" in top row
o1G = v5G;
i1G = To1G;
% last bottom row 3p adaptor with A3=0, type S2m_pp0_pii
v1G = v3F - m1G;
v2G = v3F + i1G;
m1G = a1G * v2G;
m3G = a3G * v2G;
v4G = v2G + v1G;
v5G = v4G - m3G;

o_fwd = m3G;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 37 -

Delft University of Technology – EEMCS–CAS

WDF_C5_s_2p_R: data-flow diagram

v1
A

v1
D

v1
G

v1
B

v1
E

v1
C

v1
F

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

o1
A

o1
D

o1
G

o1
B

o1
E

o 2
B

o2
E

o_
re

v
o_

fw
d

in
p

i1
A

i1
D

i1
G

i1
C

i1
F

i 2
B

i2
E

v2
A

v2
D

v2
G

v2
B

v2
E

v3
A

v3
D

v5
G

v3
B

v3
E

v4
A

v4
D

v4
G

m
1A

m
1D

m
1G

m
3G

m
1B

m
1E

m
1C

m
1F

- 38 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:36:38.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "-" in top row
o1A = v3A;
i1A = To1A;
% bottom row 3p adaptor, type s1m_ppp_pii
v1A = inp - m1A;
v2A = inp + i1A;
v3A = v1A + v2C;

WDF_C5_s_2p_R.cir
v4A = v2A + v2C;
m1A = a1A * v4A;

o_rev = v1A;

% top row 2p adaptor, serial resonator
v1B = i2B - v4C;
m1B = a1B * v1B;
v2B = i2B - m1B;
o2B = v2B;
i2B = To2B;
v3B = v1B + v2B;
o1B = v3B;
i1C = To1B;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1C = v2A + i1C;
v2C = v1C + v4C;
m1C = a1C * v1C;
v3C = i1C - m1C;
v4C = v1D - m1C;

% "-" in top row
o1D = v3D;
i1D = To1D;
% bottom row 3p adaptor, type s1m_ppp_pii
v1D = v3C - m1D;
v2D = v3C + i1D;
v3D = v1D + v2F;
v4D = v2D + v2F;
m1D = a1D * v4D;

% top row 2p adaptor, serial resonator
v1E = i2E - v4F;
m1E = a1E * v1E;
v2E = i2E - m1E;
o2E = v2E;
i2E = To2E;
v3E = v1E + v2E;
o1E = v3E;
i1F = To1E;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1F = v2D + i1F;
v2F = v1F + v4F;
m1F = a1F * v1F;
v3F = i1F - m1F;
v4F = v1G - m1F;

% "-" in top row
o1G = v5G;
i1G = To1G;
% last bottom row 3p adaptor with A3=0, type S2m_pp0_pii
v1G = v3F - m1G;
v2G = v3F + i1G;
m1G = a1G * v2G;
m3G = a3G * v2G;
v4G = v2G + v1G;
v5G = v4G - m3G;

o_fwd = m3G;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 39 -

Delft University of Technology – EEMCS–CAS

WDF_C5_s_3p: data-flow diagram

o1
G

i1
G

v2
B

v2
E

v3
B

v3
E

v4
B

v4
E

m
1B

m
1E

v1
B

v1
E

o1
B

o1
E

i1
B

i1
E

o2
B

o2
E

i2
B

i2
E

o1
A

i1
A

o1
D

i1
D

v1
A

v1
D

v1
G

v1
C

v1
F

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

o_
re

v
o_

fw
d

in
p

v2
A

v2
D

v2
G

v3
A

v3
D

v5
G

v4
A

v4
D

v4
G

m
1A

m
1D

m
1G

m
3G

m
1C

m
1F

- 40 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:36:04.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "-" in top row
o1A = v3A;
i1A = To1A;
% bottom row 3p adaptor, type s1m_ppp_pii
v1A = inp - m1A;
v2A = inp + i1A;
v3A = v1A + v2C;
v4A = v2A + v2C;
m1A = a1A * v4A;

WDF_C5_s_3p.cirWDF_C5_s_3p.cir
o_rev = v1A;

% top row 3p adaptor, reflection free, with T and -T
v1B = i1B - m1B;
v2B = i1B + i2B;
v3B = v1B - v4C;
v4B = v2B - v4C;
m1B = a1B * v4B;
o1B = v1B;
o2B = v3B;
i1B = To1B;
i2B = To2B;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1C = v2A + v2B;
v2C = v1C + v4C;
m1C = a1C * v1C;
v3C = v2B - m1C;
v4C = v1D - m1C;

% "-" in top row
o1D = v3D;
i1D = To1D;
% bottom row 3p adaptor, type s1m_ppp_pii
v1D = v3C - m1D;
v2D = v3C + i1D;
v3D = v1D + v2F;
v4D = v2D + v2F;
m1D = a1D * v4D;

% top row 3p adaptor, reflection free, with T and -T
v1E = i1E - m1E;
v2E = i1E + i2E;
v3E = v1E - v4F;
v4E = v2E - v4F;
m1E = a1E * v4E;
o1E = v1E;
o2E = v3E;
i1E = To1E;
i2E = To2E;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1F = v2D + v2E;
v2F = v1F + v4F;
m1F = a1F * v1F;
v3F = v2E - m1F;
v4F = v1G - m1F;

% "-" in top row
o1G = v5G;
i1G = To1G;
% last bottom row 3p adaptor with A3=0, type S2m_pp0_pii
v1G = v3F - m1G;
v2G = v3F + i1G;
m1G = a1G * v2G;
m3G = a3G * v2G;
v4G = v2G + v1G;
v5G = v4G - m3G;

o_fwd = m3G;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 41 -

Delft University of Technology – EEMCS–CAS

WDF_C5_p_2p_L: data-flow diagram

v1
C

v1
F

o1
G

i1
G

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

m
1C

m
1F

v1
A

v1
D

v1
G

v2
A

v2
D

v2
G

v3
A

v3
D

v3
G

v4
A

v4
D

v4
G

m
1A

m
1D

m
1G

m
3G

v6
G

o_
fw

d
o_

re
v

in
p

o1
A

i1
A

o1
D

i1
D

v1
B

o2
B

i2
B

v2
B

v3
B

m
1B

v1
E

o2
E

i2
E

v2
E

v3
E

m
1E

o1
C

i1
B

o1
F

i1
E

- 42 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:19.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "+" in top row
o1A = v4A;
i1A = To1A;
% bottom row 3p adaptor, type p1m_ppp_ipp
v1A = inp - i1A;
v2A = v1A - v4A;
m1A = a1A * v1A;
v3A = i1A + m1A;
v4A = v1C + m1A;

WDF_C5_p_2p_L.cir
o_rev = v2A;

% top row 2p adaptor, parallel resonator
o1C = v3C;
i1B = To1C;
v1B = i2B - i1B;
m1B = a1B * v1B;
v2B = m1B - i2B;
o2B = v2B;
i2B = To2B;
v3B = v1B - v2B;
% bottom row 3p adaptor, type s1m_pip_pii
v1C = v3A - m1C;
v2C = v3A - v3B;
v3C = v1C + v2D;
v4C = v2C + v2D;
m1C = a1C * v4C;

% "+" in top row
o1D = v4D;
i1D = To1D;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1D = v2C + i1D;
v2D = v1D + v4D;
m1D = a1D * v1D;
v3D = i1D - m1D;
v4D = v1F - m1D;

% top row 2p adaptor, parallel resonator
o1F = v3F;
i1E = To1F;
v1E = i2E - i1E;
m1E = a1E * v1E;
v2E = m1E - i2E;
o2E = v2E;
i2E = To2E;
v3E = v1E - v2E;
% bottom row 3p adaptor, type s1m_pip_pii
v1F = v3D - m1F;
v2F = v3D - v3E;
v3F = v1F + v2G;
v4F = v2F + v2G;
m1F = a1F * v4F;

% "+" in top row
o1G = v4G;
i1G = To1G;
% last bottom row 3p adaptor with A3=0, type P2m_ip0_ppp
v1G = v2F + i1G;
m1G = a1G * v1G;
m3G = a3G * i1G;
v3G = i1G - m1G;
v4G = v3G - m3G;
v2G = v1G + v4G;
v6G = v4G + i1G;

o_fwd = v6G;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 43 -

Delft University of Technology – EEMCS–CAS

WDF_C5_p_2p_R: data-flow diagram

v1
C

v1
F

o1
G

i1
G

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

m
1C

m
1F

v1
A

v1
D

v1
G

v2
A

v2
D

v2
G

v3
A

v3
D

v3
G

v4
A

v4
D

v4
G

m
1A

m
1D

m
1G

m
3G

v6
G

o_
fw

d
o_

re
v

in
p

o1
A

i1
A

o1
D

i1
D

v1
B

o1
Bo2

B

i1
C

i2
B

v2
B

v3
B

m
1B

v1
E

o1
Eo2

E

i1
F

i2
E

v2
E

v3
E

m
1E

- 44 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:29.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "+" in top row
o1A = v4A;
i1A = To1A;
% bottom row 3p adaptor, type p1m_ppp_ipp
v1A = inp - i1A;
v2A = v1A - v4A;
m1A = a1A * v1A;
v3A = i1A + m1A;
v4A = v1C + m1A;

WDF_C5_p_2p_R.cir
o_rev = v2A;

% top row 2p adaptor, parallel resonator
v1B = i2B - v3C;
m1B = a1B * v1B;
v2B = m1B - i2B;
o2B = v2B;
i2B = To2B;
v3B = v1B - v2B;
o1B = v3B;
i1C = To1B;
% bottom row 3p adaptor, type s1m_pip_pii
v1C = v3A - m1C;
v2C = v3A - i1C;
v3C = v1C + v2D;
v4C = v2C + v2D;
m1C = a1C * v4C;

% "+" in top row
o1D = v4D;
i1D = To1D;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1D = v2C + i1D;
v2D = v1D + v4D;
m1D = a1D * v1D;
v3D = i1D - m1D;
v4D = v1F - m1D;

% top row 2p adaptor, parallel resonator
v1E = i2E - v3F;
m1E = a1E * v1E;
v2E = m1E - i2E;
o2E = v2E;
i2E = To2E;
v3E = v1E - v2E;
o1E = v3E;
i1F = To1E;
% bottom row 3p adaptor, type s1m_pip_pii
v1F = v3D - m1F;
v2F = v3D - i1F;
v3F = v1F + v2G;
v4F = v2F + v2G;
m1F = a1F * v4F;

% "+" in top row
o1G = v4G;
i1G = To1G;
% last bottom row 3p adaptor with A3=0, type P2m_ip0_ppp
v1G = v2F + i1G;
m1G = a1G * v1G;
m3G = a3G * i1G;
v3G = i1G - m1G;
v4G = v3G - m3G;
v2G = v1G + v4G;
v6G = v4G + i1G;

o_fwd = v6G;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 45 -

Delft University of Technology – EEMCS–CAS

WDF_C5_p_3p: data-flow diagram

v1
C

v1
F

o1
G

i1
G

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

m
1C

m
1F

v1
A

v1
D

v1
G

v2
A

v2
B

v2
E

v2
D

v2
G

v3
A

v3
B

v3
E

v3
D

v3
G

v4
A

v4
B

v4
E

v4
D

v4
G

m
1A

m
1B

m
1E

m
1D

m
1G

m
3G

v1
B

v1
E

o1
B

o1
E

i1
B

i1
E

o2
B

o2
E

i2
B

i2
E

v6
G

o_
fw

d
o_

re
v

in
p

o1
A

i1
A

o1
D

i1
D

- 46 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:08.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "+" in top row
o1A = v4A;
i1A = To1A;
% bottom row 3p adaptor, type p1m_ppp_ipp
v1A = inp - i1A;
v2A = v1A - v4A;
m1A = a1A * v1A;
v3A = i1A + m1A;
v4A = v1C + m1A;

WDF_C5_p_3p.ciro_rev = v2A;

% top row 3p adaptor, reflection free, with T and -T
v1B = i1B + i2B;
v2B = v4B - v1B;
v3B = i2B - m1B;
v4B = m1B - v3C;
m1B = a1B * v1B;
o1B = v2B;
o2B = v4B;
i1B = To1B;
i2B = To2B;
% bottom row 3p adaptor, type s1m_pip_pii
v1C = v3A - m1C;
v2C = v3A - v3B;
v3C = v1C + v2D;
v4C = v2C + v2D;
m1C = a1C * v4C;

% "+" in top row
o1D = v4D;
i1D = To1D;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1D = v2C + i1D;
v2D = v1D + v4D;
m1D = a1D * v1D;
v3D = i1D - m1D;
v4D = v1F - m1D;

% top row 3p adaptor, reflection free, with T and -T
v1E = i1E + i2E;
v2E = v4E - v1E;
v3E = i2E - m1E;
v4E = m1E - v3F;
m1E = a1E * v1E;
o1E = v2E;
o2E = v4E;
i1E = To1E;
i2E = To2E;
% bottom row 3p adaptor, type s1m_pip_pii
v1F = v3D - m1F;
v2F = v3D - v3E;
v3F = v1F + v2G;
v4F = v2F + v2G;
m1F = a1F * v4F;

% "+" in top row
o1G = v4G;
i1G = To1G;
% last bottom row 3p adaptor with A3=0, type P2m_ip0_ppp
v1G = v2F + i1G;
m1G = a1G * v1G;
m3G = a3G * i1G;
v3G = i1G - m1G;
v4G = v3G - m3G;
v2G = v1G + v4G;
v6G = v4G + i1G;

o_fwd = v6G;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 47 -

Delft University of Technology – EEMCS–CAS

o1
D

i1
D

o1
A

i1
A

o1
G

i1
G

v1
A

v1
D

v6
D

v1
C

v1
F

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

o_
re

v
o_

fw
d

in
p

v2
A

v2
D

v3
A

v3
G

v5
D

v3
D

v4
A

v4
G

v4
D

m
1A

m
1G

m
1D

m
3D

m
1C

m
1F

v1
B

v1
E

o1
C

o1
F

i1
B

i1
E

v2
B

v2
E

v3
B

v3
E

m
1B

m
1E

o2
B

o2
E

i2
B

i2
E

WDF_C5_s_sym_2p_L: data-flow diagram

- 48 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:36:43.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "-" in top row
o1A = v3A;
i1A = To1A;
% bottom row 3p adaptor, type s1m_ppp_pii
v1A = inp - m1A;
v2A = inp + i1A;
v3A = v1A + v2C;
v4A = v2A + v2C;
m1A = a1A * v4A;

WDF_C5_s_sym_2p_L.cir
o_rev = v1A;

% top row 2p adaptor, serial resonator
o1C = v4C;
i1B = To1C;
v1B = i2B - i1B;
m1B = a1B * v1B;
v2B = i2B - m1B;
o2B = v2B;
i2B = To2B;
v3B = v1B + v2B;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1C = v2A + v3B;
v2C = v1C + v4C;
m1C = a1C * v1C;
v3C = v3B - m1C;
v4C = v1D - m1C;

% "-" in top row
o1G = v3G;
i1G = To1G;
% last bottom row 3p adaptor with A1=0, type s1m_0pp_iii
v4G = i1G + v2F;
m1G = a1G * v4G;
v3G = v2F - m1G;

o_fwd = m1G;

% top row 2p adaptor, serial resonator
o1F = v4F;
i1E = To1F;
v1E = i2E - i1E;
m1E = a1E * v1E;
v2E = i2E - m1E;
o2E = v2E;
i2E = To2E;
v3E = v1E + v2E;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1F = i1G + v3E;
v2F = v1F + v4F;
m1F = a1F * v1F;
v3F = v3E - m1F;
v4F = v6D - m1F;

% "-" in top row
o1D = v5D;
i1D = To1D;
% middle bottom row 3p adaptor, type S2m_ppp_pip
v1D = v3C - m1D;
v2D = i1D + v3C;
v3D = v2D + v3F;
v4D = v1D + v3D;
v5D = v4D + v6D;
v6D = v3F - m3D;
m1D = a1D * v3D;
m3D = a3D * v3D;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 49 -

Delft University of Technology – EEMCS–CAS

o1
D

i1
D

o1
A

i1
A

o1
G

i1
G

v1
A

v1
D

v6
D

v1
C

v1
F

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

o_
re

v
o_

fw
d

in
p

v2
A

v2
D

v3
A

v3
G

v5
D

v3
D

v4
A

v4
G

v4
D

m
1A

m
1G

m
1D

m
3D

m
1C

m
1F

v1
B

v1
E

v2
B

v2
E

v3
B

v3
E

m
1B

m
1E

o2
B

o2
E

i2
B

i2
E

v3
C

o1
B

o1
E

i1
C

i1
F

WDF_C5_s_sym_2p_R: data-flow diagram

- 50 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:02.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "-" in top row
o1A = v3A;
i1A = To1A;
% bottom row 3p adaptor, type s1m_ppp_pii
v1A = inp - m1A;
v2A = inp + i1A;
v3A = v1A + v2C;
v4A = v2A + v2C;
m1A = a1A * v4A;

WDF_C5_s_sym_2p_R.ciro_rev = v1A;

% top row 2p adaptor, serial resonator
v1B = i2B - v4C;
m1B = a1B * v1B;
v2B = i2B - m1B;
o2B = v2B;
i2B = To2B;
v3B = v1B + v2B;
o1B = v3B;
i1C = To1B;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1C = v2A + i1C;
v2C = v1C + v4C;
m1C = a1C * v1C;
v3C = i1C - m1C;
v4C = v1D - m1C;

% "-" in top row
o1G = v3G;
i1G = To1G;
% last bottom row 3p adaptor with A1=0, type s1m_0pp_iii
v4G = i1G + v2F;
m1G = a1G * v4G;
v3G = v2F - m1G;

o_fwd = m1G;

% top row 2p adaptor, serial resonator
v1E = i2E - v4F;
m1E = a1E * v1E;
v2E = i2E - m1E;
o2E = v2E;
i2E = To2E;
v3E = v1E + v2E;
o1E = v3E;
i1F = To1E;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1F = i1G + i1F;
v2F = v1F + v4F;
m1F = a1F * v1F;
v3F = i1F - m1F;
v4F = v6D - m1F;

% "-" in top row
o1D = v5D;
i1D = To1D;
% middle bottom row 3p adaptor, type S2m_ppp_pip
v1D = v3C - m1D;
v2D = i1D + v3C;
v3D = v2D + v3F;
v4D = v1D + v3D;
v5D = v4D + v6D;
v6D = v3F - m3D;
m1D = a1D * v3D;
m3D = a3D * v3D;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 51 -

Delft University of Technology – EEMCS–CAS

o1
D

i1
D

o1
A

i1
A

o1
G

i1
G

v1
A

v1
D

v6
D

v1
C

v1
F

v2
C

v2
F

v3
C

v3
F

v4
C

v4
F

o_
re

v
o_

fw
d

in
p

v2
A

v2
D

v3
A

v3
G

v5
D

v3
D

v4
A

v4
G

v4
D

m
1A

m
1G

m
1D

m
3D

m
1C

m
1F

v2
B

v3
B

v4
Bm
1B

v1
B

o1
B

i1
B

o2
B

i2
B

v2
E

v3
E

v4
E

m
1E

v1
E

o1
E

i1
E

o2
E

i2
E

WDF_C5_s_sym_3p: data-flow diagram

- 52 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:36:13.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "-" in top row
o1A = v3A;
i1A = To1A;
% bottom row 3p adaptor, type s1m_ppp_pii
v1A = inp - m1A;
v2A = inp + i1A;
v3A = v1A + v2C;
v4A = v2A + v2C;

WDF_C5_s_sym_3p.cirm1A = a1A * v4A;

o_rev = v1A;

% top row 3p adaptor, reflection free, with T and -T
v1B = i1B - m1B;
v2B = i1B + i2B;
v3B = v1B - v4C;
v4B = v2B - v4C;
m1B = a1B * v4B;
o1B = v1B;
o2B = v3B;
i1B = To1B;
i2B = To2B;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1C = v2A + v2B;
v2C = v1C + v4C;
m1C = a1C * v1C;
v3C = v2B - m1C;
v4C = v1D - m1C;

% "-" in top row
o1G = v3G;
i1G = To1G;
% last bottom row 3p adaptor with A1=0, type s1m_0pp_iii
v4G = i1G + v2F;
m1G = a1G * v4G;
v3G = v2F - m1G;

o_fwd = m1G;

% top row 3p adaptor, reflection free, with T and -T
v1E = i1E - m1E;
v2E = i1E + i2E;
v3E = v1E - v4F;
v4E = v2E - v4F;
m1E = a1E * v4E;
o1E = v1E;
o2E = v3E;
i1E = To1E;
i2E = To2E;
% bottom row 3p adaptor, type p1m_ipp_ppp
v1F = i1G + v2E;
v2F = v1F + v4F;
m1F = a1F * v1F;
v3F = v2E - m1F;
v4F = v6D - m1F;

% "-" in top row
o1D = v5D;
i1D = To1D;
% middle bottom row 3p adaptor, type S2m_ppp_pip
v1D = v3C - m1D;
v2D = i1D + v3C;
v3D = v2D + v3F;
v4D = v1D + v3D;
v5D = v4D + v6D;
v6D = v3F - m3D;
m1D = a1D * v3D;
m3D = a3D * v3D;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 53 -

Delft University of Technology – EEMCS–CAS

v1
C

v4
F

v2
C

v2
F

v3
C

v3
F

v4
C

v1
F

m
1C

m
1F

v1
A

v2
A

v2
G

v3
A

v3
G

v4
A

v4
G

m
1A

m
1G

o_
fw

d
o_

re
v

in
p

o1
A

o1
G

i1
A

i1
G

v1
B

o2
B

i2
B

v2
B

v3
B

m
1B

v1
E

o2
E

i2
E

v2
E

v3
E

m
1E

o1
C

i1
B

o1
F

i1
E

o1
D

i1
D

v1
D

v5
D

v2
D

v3
D

v4
D

m
1D

m
3D

v6
D

WDF_C5_p_sym_2p_L: data-flow diagram

- 54 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:48.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "+" in top row
o1A = v4A;
i1A = To1A;
% bottom row 3p adaptor, type p1m_ppp_ipp
v1A = inp - i1A;
v2A = v1A - v4A;
m1A = a1A * v1A;
v3A = i1A + m1A;
v4A = v1C + m1A;

WDF_C5_p_sym_2p_L.ciro_rev = v2A;

% top row 2p adaptor, parallel resonator
o1C = v3C;
i1B = To1C;
v1B = i2B - i1B;
m1B = a1B * v1B;
v2B = m1B - i2B;
o2B = v2B;
i2B = To2B;
v3B = v1B - v2B;
% bottom row 3p adaptor, type s1m_pip_pii
v1C = v3A - m1C;
v2C = v3A - v3B;
v3C = v1C + v2D;
v4C = v2C + v2D;
m1C = a1C * v4C;

% "+" in top row
o1G = v4G;
i1G = To1G;
% last bottom row 3p adaptor with A1=0, type p1m_0pp_ppp
m1G = a1G * i1G;
v3G = i1G - m1G;
v4G = v1F - m1G;
v2G = i1G + v4G;

o_fwd = v2G;

% top row 2p adaptor, parallel resonator
o1F = v3F;
i1E = To1F;
v1E = i2E - i1E;
m1E = a1E * v1E;
v2E = m1E - i2E;
o2E = v2E;
i2E = To2E;
v3E = v1E - v2E;
% bottom row 3p adaptor, type s1m_pip_pii
v1F = v3G - m1F;
v2F = v3G - v3E;
v3F = v1F + v6D;
v4F = v2F + v6D;
m1F = a1F * v4F;

% "+" in top row
o1D = v4D;
i1D = To1D;
% middle bottom row 3p adaptor, type P2m_ipi_ppp
v1D = v2C + i1D;
v2D = v1D + v4D;
v3D = i1D - m1D;
v4D = v3D - m3D;
v5D = i1D + v2F;
v6D = v4D + v5D;
m1D = a1D * v1D;
m3D = a3D * v5D;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 55 -

Delft University of Technology – EEMCS–CAS

v1
C

v4
F

v2
C

v2
F

v3
C

v3
F

v4
C

v1
F

m
1C

m
1F

v1
A

v2
A

v2
G

v3
A

v3
G

v4
A

v4
G

m
1A

m
1G

o_
fw

d
o_

re
v

in
p

o1
A

o1
G

i1
A

i1
G

v1
B

o2
B

i2
B

v2
B

v3
B

m
1B

v1
E

o2
E

i2
E

v2
E

v3
E

m
1E

o1
D

i1
D

v1
D

v5
D

v2
D

v3
D

v4
D

m
1D

m
3D

v6
D

o1
B

i1
C

o1
E

i1
F

WDF_C5_p_sym_2p_R: data-flow diagram

- 56 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:58.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "+" in top row
o1A = v4A;
i1A = To1A;
% bottom row 3p adaptor, type p1m_ppp_ipp
v1A = inp - i1A;
v2A = v1A - v4A;
m1A = a1A * v1A;
v3A = i1A + m1A;
v4A = v1C + m1A;

WDF_C5_p_sym_2p_R.cir
o_rev = v2A;

% top row 2p adaptor, parallel resonator
v1B = i2B - v3C;
m1B = a1B * v1B;
v2B = m1B - i2B;
o2B = v2B;
i2B = To2B;
v3B = v1B - v2B;
o1B = v3B;
i1C = To1B;
% bottom row 3p adaptor, type s1m_pip_pii
v1C = v3A - m1C;
v2C = v3A - i1C;
v3C = v1C + v2D;
v4C = v2C + v2D;
m1C = a1C * v4C;

% "+" in top row
o1G = v4G;
i1G = To1G;
% last bottom row 3p adaptor with A1=0, type p1m_0pp_ppp
m1G = a1G * i1G;
v3G = i1G - m1G;
v4G = v1F - m1G;
v2G = i1G + v4G;

o_fwd = v2G;

% top row 2p adaptor, parallel resonator
v1E = i2E - v3F;
m1E = a1E * v1E;
v2E = m1E - i2E;
o2E = v2E;
i2E = To2E;
v3E = v1E - v2E;
o1E = v3E;
i1F = To1E;
% bottom row 3p adaptor, type s1m_pip_pii
v1F = v3G - m1F;
v2F = v3G - i1F;
v3F = v1F + v6D;
v4F = v2F + v6D;
m1F = a1F * v4F;

% "+" in top row
o1D = v4D;
i1D = To1D;
% middle bottom row 3p adaptor, type P2m_ipi_ppp
v1D = v2C + i1D;
v2D = v1D + v4D;
v3D = i1D - m1D;
v4D = v3D - m3D;
v5D = i1D + v2F;
v6D = v4D + v5D;
m1D = a1D * v1D;
m3D = a3D * v5D;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 57 -

Delft University of Technology – EEMCS–CAS

v1
C

v4
F

v2
C

v2
F

v3
C

v3
F

v4
C

v1
F

m
1C

m
1F

v1
A

v2
A

v2
G

v3
A

v3
G

v4
A

v4
G

m
1A

m
1G

o_
fw

d
o_

re
v

in
p

o1
A

o1
G

i1
A

i1
G

o1
D

i1
D

v1
D

v5
D

v2
D

v3
D

v4
D

m
1D

m
3D

v6
D

v2
B

v3
B

v4
B

m
1B

v1
B

o1
B

i1
B

o2
B

i2
B

v2
E

v3
E

v4
E

m
1E

v1
E

o1
E

i1
E

o2
E

i2
E

WDF_C5_p_sym_3p: data-flow diagram

- 58 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% Wave Digital Filter structure.
% Code generated by WDF2cir.m on 13-Nov-2006 11:37:14.

% external input 'inp', external outputs 'o_fwd' and 'o_rev'

% "+" in top row
o1A = v4A;
i1A = To1A;
% bottom row 3p adaptor, type p1m_ppp_ipp
v1A = inp - i1A;
v2A = v1A - v4A;

WDF_C5_p_sym_3p.cirm1A = a1A * v1A;
v3A = i1A + m1A;
v4A = v1C + m1A;

o_rev = v2A;

% top row 3p adaptor, reflection free, with T and -T
v1B = i1B + i2B;
v2B = v4B - v1B;
v3B = i2B - m1B;
v4B = m1B - v3C;
m1B = a1B * v1B;
o1B = v2B;
o2B = v4B;
i1B = To1B;
i2B = To2B;
% bottom row 3p adaptor, type s1m_pip_pii
v1C = v3A - m1C;
v2C = v3A - v3B;
v3C = v1C + v2D;
v4C = v2C + v2D;
m1C = a1C * v4C;

% "+" in top row
o1G = v4G;
i1G = To1G;
% last bottom row 3p adaptor with A1=0, type p1m_0pp_ppp
m1G = a1G * i1G;
v3G = i1G - m1G;
v4G = v1F - m1G;
v2G = i1G + v4G;

o_fwd = v2G;

% top row 3p adaptor, reflection free, with T and -T
v1E = i1E + i2E;
v2E = v4E - v1E;
v3E = i2E - m1E;
v4E = m1E - v3F;
m1E = a1E * v1E;
o1E = v2E;
o2E = v4E;
i1E = To1E;
i2E = To2E;
% bottom row 3p adaptor, type s1m_pip_pii
v1F = v3G - m1F;
v2F = v3G - v3E;
v3F = v1F + v6D;
v4F = v2F + v6D;
m1F = a1F * v4F;

% "+" in top row
o1D = v4D;
i1D = To1D;
% middle bottom row 3p adaptor, type P2m_ipi_ppp
v1D = v2C + i1D;
v2D = v1D + v4D;
v3D = i1D - m1D;
v4D = v3D - m3D;
v5D = i1D + v2F;
v6D = v4D + v5D;
m1D = a1D * v1D;
m3D = a3D * v5D;

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 59 -

Delft University of Technology – EEMCS–CAS

LWDF_5_L: data-flow diagram

o_hp

o_lp

inp

o1A

o2B

i2A

i3B

v2A

v5B

v2B

v1A

v4B

v1Bv3A

v6B

v3B

m1A

m2B

m1B

o1B

i2B

o2C i3C
v5C

v2C

v4C

v1C

v6C

v3C

v2

v1 >>1

>>1

m2C

m1C

o1C

i2C

- 60 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% lowpass/highpass filter of Order 5
% as a Lattice Wave Digital Filter structure.
% Code generated by LWDF2cir.m on 17-Nov-2006 11:51:49.

% external input 'inp', external outputs 'o_hp' and 'o_lp'

% TOP ROW ALL-PASS SECTION(S):
% single section, single delay:
v1A = i2A - inp;
m1A = a1A * v1A;
v2A = inp + m1A;
o1A = v2A;
i2A = To1A;
v3A = i2A + m1A;

LWDF_5_L.cir% 2nd degree section, 2 delay elements:
v1B = v6B - v3A;
m1B = a1B * v1B;
v2B = v3A + m1B;
o1B = v2B;
i2B = To1B;
v3B = v6B + m1B;
v4B = i3B - i2B;
m2B = a2B * v4B;
v5B = i2B + m2B;
o2B = v5B;
i3B = To2B;
v6B = i3B + m2B;

% BOTTOM ROW ALL-PASS SECTION(S):
% 2nd degree section, 2 delay elements:
v1C = v6C - inp;
m1C = a1C * v1C;
v2C = inp + m1C;
o1C = v2C;
i2C = To1C;
v3C = v6C + m1C;
v4C = i3C - i2C;
m2C = a2C * v4C;
v5C = i2C + m2C;
o2C = v5C;
i3C = To2C;
v6C = i3C + m2C;

% OUTPUT SECTION:
v1 = v3C - v3B;
o_hp = (v1 >> 1); % v1/2
v2 = v3C + v3B;
o_lp = (v2 >> 1); % v2/2

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 61 -

Delft University of Technology – EEMCS–CAS

LWDF_5_R: data-flow diagram

o_hp

o_lp

inp

o1A

o1B

i2A

i2B

v2A

v5B

v2B

v1A

v4B

v1Bv3A

v6B

v3B

m1A

m2B

m1B

o2B

i3B

o1C i2C
v5C

v2C

v4C

v1C

v6C

v3C

v2

v1 >>1

>>1

m2C

m1C

o2C

i3C

- 62 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% lowpass/highpass filter of Order 5
% as a Lattice Wave Digital Filter structure.
% Code generated by LWDF2cir.m on 13-Nov-2006 11:38:26.

% external input 'inp', external outputs 'o_hp' and 'o_lp'

% TOP ROW ALL-PASS SECTION(S):
% single section, single delay:
v1A = i2A - inp;
m1A = a1A * v1A;
v2A = inp + m1A;
o1A = v2A;
i2A = To1A;
v3A = i2A + m1A;

% 2nd degree section, 2 delay elements:

LWDF_5_R.cir
v1B = i3B - v3A;
m1B = a1B * v1B;
v2B = v3A + m1B;
v4B = i2B - v2B;
m2B = a2B * v4B;
v5B = v2B + m2B;
o1B = v5B;
i2B = To1B;
v6B = i2B + m2B;
o2B = v6B;
i3B = To2B;
v3B = m1B + i3B;

% BOTTOM ROW ALL-PASS SECTION(S):
% 2nd degree section, 2 delay elements:
v1C = i3C - inp;
m1C = a1C * v1C;
v2C = inp + m1C;
v4C = i2C - v2C;
m2C = a2C * v4C;
v5C = v2C + m2C;
o1C = v5C;
i2C = To1C;
v6C = i2C + m2C;
o2C = v6C;
i3C = To2C;
v3C = m1C + i3C;

% OUTPUT SECTION:
v1 = v3C - v3B;
o_hp = (v1 >> 1); % v1/2
v2 = v3C + v3B;
o_lp = (v2 >> 1); % v2/2

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 63 -

Delft University of Technology – EEMCS–CAS

LWDF_5_T_L: data-flow diagram

inp

o1A i2A

irt2

irb2

v2A

v1A v3A

m1A

o_hp

o_lp

o2B i3B

v5B

v2B

v4B

v1B

v6B

v3B

m2B

m1B

o2C i3C
v5C

v2C

v4C

v1C

v6C

v3C

v2

v1 >>1

>>1

m2C

m1C

o1B

i2B

o1C

i2C

- 64 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% lowpass/highpass filter of Order 5
% as a Lattice Wave Digital Filter structure.
% Code generated by LWDF2cir.m on 13-Nov-2006 11:38:44.

% external input 'inp', external outputs 'o_hp' and 'o_lp'

% TOP ROW ALL-PASS SECTION(S):
% single section, single delay:
v1A = i2A - inp;
m1A = a1A * v1A;
v2A = inp + m1A;
o1A = v2A;
i2A = To1A;
v3A = i2A + m1A;

% inserted pipeline register:
ort1 = v3A;

LWDF_5_T_L.cirirt2 = Tort1;

% 2nd degree section, 2 delay elements:
v1B = v6B - irt2;
m1B = a1B * v1B;
v2B = irt2 + m1B;
o1B = v2B;
i2B = To1B;
v3B = v6B + m1B;
v4B = i3B - i2B;
m2B = a2B * v4B;
v5B = i2B + m2B;
o2B = v5B;
i3B = To2B;
v6B = i3B + m2B;

% BOTTOM ROW ALL-PASS SECTION(S):
% inserted pipeline register:
orb1 = inp;
irb2 = Torb1;

% 2nd degree section, 2 delay elements:
v1C = v6C - irb2;
m1C = a1C * v1C;
v2C = irb2 + m1C;
o1C = v2C;
i2C = To1C;
v3C = v6C + m1C;
v4C = i3C - i2C;
m2C = a2C * v4C;
v5C = i2C + m2C;
o2C = v5C;
i3C = To2C;
v6C = i3C + m2C;

% OUTPUT SECTION:
v1 = v3C - v3B;
o_hp = (v1 >> 1); % v1/2
v2 = v3C + v3B;
o_lp = (v2 >> 1); % v2/2

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 65 -

Delft University of Technology – EEMCS–CAS

LWDF_5_T_R: data-flow diagram

inp

o1A i2A

irt2

irb2

v2A

v1A v3A

m1A

o_hp

o_lp

o1B i2B

v5B

v2B

v4B

v1B

v6B

v3B

m2B

m1B

o2B

i3B

o1C i2C
v5C

v2C

v4C

v1C

v6C

v3C

v2

v1 >>1

>>1

m2C

m1C

o2C

i3C

- 66 - ET4 054: Laboratory Exercise

 Delft University of Technology – EEMCS–CAS

% lowpass/highpass filter of Order 5
% as a Lattice Wave Digital Filter structure.
% Code generated by LWDF2cir.m on 13-Nov-2006 11:38:53.

% external input 'inp', external outputs 'o_hp' and 'o_lp'

% TOP ROW ALL-PASS SECTION(S):
% single section, single delay:
v1A = i2A - inp;
m1A = a1A * v1A;
v2A = inp + m1A;
o1A = v2A;
i2A = To1A;
v3A = i2A + m1A;

% inserted pipeline register:
ort1 = v3A;
irt2 = Tort1;

LWDF_5_T_R.cir
% 2nd degree section, 2 delay elements:
v1B = i3B - irt2;
m1B = a1B * v1B;
v2B = irt2 + m1B;
v4B = i2B - v2B;
m2B = a2B * v4B;
v5B = v2B + m2B;
o1B = v5B;
i2B = To1B;
v6B = i2B + m2B;
o2B = v6B;
i3B = To2B;
v3B = m1B + i3B;

% BOTTOM ROW ALL-PASS SECTION(S):
% inserted pipeline register:
orb1 = inp;
irb2 = Torb1;

% 2nd degree section, 2 delay elements:
v1C = i3C - irb2;
m1C = a1C * v1C;
v2C = irb2 + m1C;
v4C = i2C - v2C;
m2C = a2C * v4C;
v5C = v2C + m2C;
o1C = v5C;
i2C = To1C;
v6C = i2C + m2C;
o2C = v6C;
i3C = To2C;
v3C = m1C + i3C;

% OUTPUT SECTION:
v1 = v3C - v3B;
o_hp = (v1 >> 1); % v1/2
v2 = v3C + v3B;
o_lp = (v2 >> 1); % v2/2

% (c) HJLA, 2005
% [EOF]

ET4 054: Laboratory Exercise - 67 -

Delft University of Technology – EEMCS–CAS

This page intentionally left blank

- 68 - ET4 054: Laboratory Exercise

