
A Design Example

Huibert J. Lincklaen Arriëns, December 2002 ( last revision: Januari 23, 2003 ).

The design starts from a 5th order normalized Chebychef lowpass filter with ρ = 25%, which we augment with two
zeros in the stopband at ωs1 = 1.3481 and ωs2 = 1.9480 rad/s (there is also one at infinity).
These are in fact the transmission zeros belonging to a 5th order Cauer filter –C05 25 50 (Zverev, pgs. 220, 221)–
with the same reflection coëfficiënt.
Next to these zeros, also one Unit Element has been added according to the Sharpe method in a way that it
contributes to the overall order of the circuit.
We can describe the approximation of the ideal low pass characteristic now with

|H(s)|2s=jω =
1

1 + �2 ·C ·R2(ω)

in which R is a rational function, and with

�2 = 100.1rp − 1 = 0.06667

since it can be calculated that a ρ = 25% corresponds to a ripple in the passband of rp = 0.2803 dB.
The multiplication constant C will be choosen such that

£
C ·R2(ω)¤

ω=1
= 1.

We can derive (in our case using the method described by Vlach) that the rational function R used in the filter
approximation will show 3 zeros in the passband, viz. at ωp1 = 0.28332, ωp2 = 0.75083 and at ωp3 = 0.97459
rad/s.

Knowing the zeros and poles of R and taking the additional Unit Element into account, we can determineR2(ω) :

R2(ω) =
ω12 − 3.1877ω10 + 3.8542ω8 − 2.1801ω6 + 0.5686ω4 − 0.0565ω2 + 0.0018

ω10 − 10.2242ω8 + 34.0640ω6 − 32.1180ω4 − 29.8459ω2 + 47.5603

In order that
£
C ·R2(ω)¤

ω=1
= 1, we need a C = 25744.

Rewriting |H(s)|2s=jω as a rational function of Belevitch polynomials, we find

|H(s)|2s=jω =
1

1 +
hh∗

f f∗

=
f f∗

f f∗ + hh∗
=

f f∗

g g∗

in which

f f∗ = ω10 − 10.2242ω8 + 34.0640ω6 − 32.1180ω4 − 29.8459ω2 + 47.5603

hh∗ = 1716.27ω12 − 5470.90ω10 + 6614.84ω8 − 3741.63ω6 + 975.856ω4 − 96.9237ω2 + 3.1707

g g∗ = 1716.27ω12 − 5469.90ω10 + 6604.62ω8 − 3707.56ω6 + 943.738ω4 − 126.7696ω2 + 50.7309

g g∗ = 1716.27s12 + 5469.90s10 + 6604.62s8 + 3707.56s6 + 943.738s4 + 126.7696s2 + 50.7309
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Figure 1: Amplitude Transfer Characteristic of the resulting low-pass filter in the w-plane

By determining the zeros of g g∗ and keeping only those in the left halfplane, we obtain g(s):

g(s) = 41.4279s6 + 55.6100s5 + 103.3406s4 + 85.9627s3 + 66.2128s2 + 28.5734s+ 7.1226

h(s) = 41.4279s6 + 66.0291s4 + 27.2160s2 + 1.7806

We can also calculate f(s) and h(s), which gives us a.o.

|H(s)| = f(s)

g(s)
=

s5 − s4 + 5.6121s3 − 5.6121s2 + 6.8964s− 6.8964
41.4279s6 + 55.6100s5 + 103.3406s4 + 85.9627s3 + 66.2128s2 + 28.5734s+ 7.1226

In Figure 1, the amplitude transfer characteristic |H(s)|s=jω in the w-plane in given.

Now, from the polynomials g(s) and h(s) we can derive the driving input impedance Zin(s)of the ladder structure
to be

Zin(s) =
g(s) + h(s)

g(s)− h(s)
, or

Zin(s) =
82.8558s6 + 55.6100s5 + 169.3697s4 + 85.9627s3 + 93.4288s2 + 28.5734s+ 8.9032

55.6100s5 + 37.3115s4 + 85.9627s3 + 38.9969s2 + 28.5734s+ 5.3419

We use this input impedance to synthesize the mathing lossless twoport ladder network. From the impedance, we
first extract an inductance, by assuming that this inductance is immediately followed by a series resonator circuit
tuned to 1.9480 rad/s (ωs2). The inductor’s value can then be found from

Ls =

∙
Zin(s)

s

¸
s=jωs2

.
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and we obtain

Zin(s) = 1.2749s+
11.9559s6 + 8.0398s5 + 59.7717s4 + 36.2437s3 + 56.9991s2 + 21.7627s+ 8.9032

55.6100s5 + 37.3115s4 + 85.9627s3 + 38.9969s2 + 28.5734s+ 5.3419

=L1s+ Z1(s)

with L1 = 1.2749 H

Now we extract the resonator circuit from

Y1(s) =
1

Z1(s)
=

55.6100s5 + 37.3115s4 + 85.9627s3 + 38.9969s2 + 28.5734s+ 5.3419

11.9559s6 + 8.0398s5 + 59.7717s4 + 36.2437s3 + 56.9991s2 + 21.7627s+ 8.9032

and obtain

Y1(s) =
4.1979s

s2 + 1.94802
+

5.4204s3 + 3.5613s2 + 4.9343s+ 1.4077

11.9559s4 + 8.0398s3 + 14.4024s2 + 5.7350s+ 2.3462

or

Y1(s) =

1

L2
s

s2 +
1

L2C2

+ Y2(s)

from which we find L2 = 0.2382 H and C2 = 1.1062 F

Before the next element we want the Unit Element to appear. We calculate the Unit Element RUE1 using

Z2(s) =
1

Y2(s)
=
11.9559s4 + 8.0398s3 + 14.4024s2 + 5.7350s+ 2.3462

5.4204s3 + 3.5613s2 + 4.9343s+ 1.4077

by determining RUE1 = [Z2(s)]s=1, resulting in RUE1 = 2.7721 Ω

We then derive a new Z3(s) from the previous Z2(s): if we define Z2(s) =
b(s)

a(s)
, then Z3(s) can be written as

Z3(s) = RUE1
RUE1 · s · a(s)− b(s)

s · b(s)−RUE1 · a(s)

Z3(s) =
8.5106s4 + 5.0803s3 − 2.0066s2 − 5.0803s− 6.5040

11.9559s5 + 8.0398s4 − 0.6236s3 − 4.1374s2 − 11.3323s− 3.9024

Now both nominator and denominator can be divided by s2 − 1, which reduces Z3(s) to

Z3(s) =
8.5106s2 + 5.0803s+ 6.5040

11.9559s3 + 8.0398s2 + 11.3323s+ 3.9024

3



Now from the inverse Y3(s) =
1

Z3(s)
it is possible to extract a capacitance, when we assume that this capacitance

is followed by a resonator circuit tuned to 1.3481 rad/s (ωs1).

We find C3 from C3 =

∙
Y3(s)

s

¸
s=jωs1

, and can rewrite Y3(s) as

Y3(s) = 1.1599s+
2.0845s3 + 2.1473s2 + 3.7884s+ 3.9024

8.5106s2 + 5.0803s+ 6.5040
= C3.s+ Y4(s)

so C3 = 1.1599 F

From Z4(s) =
1

Y4(s)
=

8.5106s2 + 5.0803s+ 6.5040

2.0845s3 + 2.1473s2 + 3.7884s+ 3.9024

we can derive the elements of the parallel resonator, viz.

Z4(s) =
2.3659s

s2 + 1.34812
+

3.5788

2.0845s+ 2.1473

where

Z4(s) =

1

C4
s

s2 +
1

L4C4

+ Z5(s)

which gives us L4 = 1.3018 H and C4 = 0.4227 F

Finally from

Y5(s) =
1

Z5(s)
=
2.0845s+ 2.1473

3.5788
= 0.5825s+ 0.6000 = C5s+

1

Ro

we find the last two elements to be

C5 = 0.5825 F

Ro = 1.6667 Ω

Figure 2 shows the resulting ladder structure.

Figure 2: The topology and element values of the resulting ladder structure.
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To verify the results, an input file for the APLAC Simulation program was created, in which the elements of the
ladder structure were described as being microwave transmission lines. All transmission lines will have the same
length (defined by the cut-off frequency), but with impedance values defined by the different element values.
The translation from ladder structure into microwave transmission lines circuit yields the realization as shown in
Figure 3, and the i-input file for the APLAC program as listed in Figure 4. Since the intention is just to verify the
calculations so far, the microwave circuit is also normalized to a cut-off frequency of a mere 1 Hz.
In Figures 5 and 6, respectively the overall amplitude transfer characteristic (not showing repetition) of the
distributed filter, and a zoomed in version of the passband are shown. Due to the non-linear transformation method
used, together with our choice of normalizaion, we have to recalculate where the frequencies of interest ωp and ωs
will result in now.
It is well known that the relation

f =
arctan(ω)

π

4

exist, where f denotes the frequency along the horizontal axis in Figures 5 and 6, when ω is used along the axis of
Figure 1 in our original design.

points of interest ω f

p1 0.2833 0.3515
p2 0.7508 0.8200
p3 0.9746 0.9836

cut off 1.0000 1.0000
s1 1.3481 1.1874
s2 1.9480 1.3961

infinity ∞ 2.0000

Measurements using the ’cursor’ option in APLAC being in accordance with our calculations, prove the correctness
of our complete design.

Figure 3: A realization in transmission lines of the ladder structure of Figure 2.
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Figure 4: Listing of the input file for APLAC.
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Figure 5: Output from the APLAC Simulator
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Figure 6: The passband, according to the APLAC Simulator.
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