Calculating k for a Cauer filter when the filter order (N), the maximum ripple in the passband $\left(A_{\max }\right)$ and the minimum ripple in the stopband $\left(A_{\min }\right)$ are known.

From $A_{\max }$ and $A_{\text {min }}$ we can calculate k_{1} and k_{1}^{\prime} according to

$$
k_{1}=\sqrt{\frac{10^{0.1 A_{\max }}-1}{10^{0.1 A_{\min }}-1}} \text { and } k_{1}^{\prime}=\sqrt{1-k_{1}^{2}}
$$

which gives us also K_{1} and K_{1}^{\prime} (preferably by using the AGM-method).
The goal now, is to find k such that the K and K^{\prime}, resulting from that k, satisfy the equality $\frac{K^{\prime}}{K}=\frac{K_{1}^{\prime}}{N K_{1}}$.

Therefore, we use the approximation for sn using theta-functions [1]:

$$
\begin{equation*}
\operatorname{sn}(z, k)=\frac{1}{\sqrt{k}} \frac{\theta_{1}\left(\frac{z}{2 K}, q\right)}{\theta_{0}\left(\frac{z}{2 K}, q\right)} \tag{1}
\end{equation*}
$$

in which $q=e^{-\pi \frac{K^{\prime}}{K}}, \quad$ or $\quad q=e^{-\pi \frac{K_{1}^{\prime}}{N K_{1}}}, \quad$ and

$$
\begin{gathered}
\theta_{1}\left(\frac{z}{2 K}, q\right)=2 \sqrt[4]{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m(m+1)} \sin \left[(2 m+1) \frac{\pi z}{2 K}\right] \\
\theta_{0}\left(\frac{z}{2 K}, q\right)=1+2 \sum_{m=1}^{\infty}(-1)^{m} q^{m^{2}} \cos \left(2 m \frac{\pi z}{2 K}\right)
\end{gathered}
$$

Knowing that $\operatorname{sn}(K, k)=1$ for all k, we will rewrite the θ-equations for $z=K$:

$$
\begin{gathered}
\theta_{1}\left(\frac{1}{2}, q\right)=2 \sqrt[4]{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m(m+1)} \sin \left[(2 m+1) \frac{\pi}{2}\right]=2 \sqrt[4]{q} \sum_{m=0}^{\infty} q^{m(m+1)} \\
\theta_{0}\left(\frac{1}{2}, q\right)=1+2 \sum_{m=1}^{\infty}(-1)^{m} q^{m^{2}} \cos (m \pi)=1+2 \sum_{m=1}^{\infty} q^{m^{2}}
\end{gathered}
$$

while both $\sin \left[(2 m+1) \frac{\pi}{2}\right]$, as well as $\cos (m \pi)$ reduce to another $(-1)^{m}$.

Thus

$$
\begin{equation*}
1=\frac{1}{\sqrt{k}} \frac{2 \sqrt[4]{q} \sum_{m=0}^{\infty} q^{m(m+1)}}{1+2 \sum_{m=1}^{\infty} q^{m^{2}}} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
k=4 \sqrt{q}\left(\frac{\sum_{m=0}^{\infty} q^{m(m+1)}}{1+2 \sum_{m=1}^{\infty} q^{m^{2}}}\right)^{2} \tag{3}
\end{equation*}
$$

When we choose $m_{\max }=3$ instead of ∞, we can calculate k with

$$
k=4 \sqrt{q}\left(\frac{1+q^{2}+q^{6}+q^{12}}{1+2 q+2 q^{4}+2 q^{9}}\right)^{2} \quad \text { in which } \quad q=e^{-\pi \frac{K_{1}^{\prime}}{N K_{1}}}
$$

Some reflections on the accuracy of the approximation of k

To evaluate the usefulness of the approximation of k, we will calculate $\frac{K^{\prime}}{K}$ as a function of $k_{r e f}$ using the AGM-method, and from these $\frac{K^{\prime}}{K}$ recompute the approximated $k_{\text {app }}$. We will perform the approximation using different orders of the θ-functions in the numerator and denominator of (3). Therefore, we will rewrite (3) as

$$
\begin{equation*}
k_{a p p}=4 \sqrt{q}\left(\frac{\sum_{m n=0}^{M N} q^{m n(m n+1)}}{1+2 \sum_{m d=1}^{M D} q^{m d^{2}}}\right)^{2} \tag{4}
\end{equation*}
$$

In Figures 1 and 2, the resulting error $\left|k_{\text {app }}-k_{r e f}\right|$ is shown with $M N$ and $M D$ as parameters. Note that the error plots for $M N=M D=3$ and those for $M N=4, M D=3$ completely overlap, so increasing the order of only the numerator seems to be ineffective.

Figure 1: Error for k between 0 and 1

From tables, like those given in Christian \& Eisenmann [2], it follows that it will be reasonable to focus on k values between about 0.6 and 0.9 for representing realistic Cauer filters. For those k 's, the Figures show that an approximation based on $M N=M D=3$ will be more than sufficient. When larger errors (in the order of not exceeding 10^{-6}) are allowed, even $M N=M D=2$ can be tolerated.

For better approximations for $k>0.9$, it is of course possible to increase $M D$ or even $M D$ and $M N$ depending on the value of $\frac{K^{\prime}}{K}$ (or $\frac{K_{1}^{\prime}}{N K_{1}}$) resulting from the design parameters. In Figure $3, \frac{K^{\prime}}{K}$ is shown for $0.9 \leq k \leq 1.0$.

H.J. Lincklaen Arriëns, November 2002.

References

[1] A.Antoniou, Digital Filters: Analysis and Design, McFraw-Hill Book Company (1979)
[2] E. Christian \& E. Eisenmann, Filter Design Tables and Graphs, John Wiley \& Sons, Inc. (1966)

Figure 2: Error for k zoomed in to 0.9 to 1

Figure $3: \frac{K^{\prime}}{K}$ as a function of k

