Calculating k for a Cauer filter when the filter order (N), the maximum ripple in the passband (A_{\max}) and the minimum ripple in the stopband (A_{\min}) are known.

From A_{max} and A_{min} we can calculate k_1 and k'_1 according to

$$k_1 = \sqrt{\frac{10^{0.1A_{\text{max}}} - 1}{10^{0.1A_{\text{min}}} - 1}}$$
 and $k'_1 = \sqrt{1 - k_1^2}$,

which gives us also K_1 and K'_1 (preferably by using the AGM-method). The goal now, is to find k such that the K and K', resulting from that k, satisfy the equality $\frac{K'}{K} = \frac{K'_1}{NK_1}$.

Therefore, we use the approximation for sn using theta-functions [1]:

$$sn(z,k) = \frac{1}{\sqrt{k}} \frac{\theta_1(\frac{z}{2K},q)}{\theta_0(\frac{z}{2K},q)} \tag{1}$$

in which $q = e^{-\pi \frac{K'}{K}}$, or $q = e^{-\pi \frac{K'_1}{NK_1}}$, and

$$\theta_1(\frac{z}{2K},q) = 2\sqrt[4]{q} \sum_{m=0}^{\infty} (-1)^m q^{m(m+1)} \sin\left[(2m+1)\frac{\pi z}{2K}\right]$$
$$\theta_0(\frac{z}{2K},q) = 1 + 2\sum_{m=1}^{\infty} (-1)^m q^{m^2} \cos\left(2m\frac{\pi z}{2K}\right).$$

Knowing that $\operatorname{sn}(K, k) = 1$ for all k, we will rewrite the θ -equations for z = K:

$$\theta_1(\frac{1}{2},q) = 2\sqrt[4]{q} \sum_{m=0}^{\infty} (-1)^m q^{m(m+1)} \sin\left[(2m+1)\frac{\pi}{2}\right] = 2\sqrt[4]{q} \sum_{m=0}^{\infty} q^{m(m+1)}$$
$$\theta_0(\frac{1}{2},q) = 1 + 2\sum_{m=1}^{\infty} (-1)^m q^{m^2} \cos\left(m\pi\right) = 1 + 2\sum_{m=1}^{\infty} q^{m^2},$$

while both $\sin\left[\left(2m+1\right)\frac{\pi}{2}\right]$, as well as $\cos\left(m\pi\right)$ reduce to another $(-1)^m$.

1

Thus

$$1 = \frac{1}{\sqrt{k}} \frac{2\sqrt[4]{q} \sum_{m=0}^{\infty} q^{m(m+1)}}{1 + 2\sum_{m=1}^{\infty} q^{m^2}}$$
(2)

or

$$k = 4\sqrt{q} \left(\frac{\sum_{m=0}^{\infty} q^{m(m+1)}}{1 + 2\sum_{m=1}^{\infty} q^{m^2}}\right)^2$$
(3)

When we choose $m_{\text{max}} = 3$ instead of ∞ , we can calculate k with

$$k = 4\sqrt{q} \left(\frac{1+q^2+q^6+q^{12}}{1+2q+2q^4+2q^9}\right)^2 \quad \text{in which} \quad q = e^{-\pi \frac{K_1'}{NK_1}}$$

Some reflections on the accuracy of the approximation of k

To evaluate the usefulness of the approximation of k, we will calculate $\frac{K'}{K}$ as a function of k_{ref} using the AGM-method, and from these $\frac{K'}{K}$ recompute the approximated k_{app} . We will perform the approximation using different orders of the θ -functions in the numerator and denominator of (3). Therefore, we will rewrite (3) as

$$k_{app} = 4\sqrt{q} \left(\frac{\sum_{mn=0}^{MN} q^{mn(mn+1)}}{1 + 2\sum_{md=1}^{MD} q^{md^2}} \right)^2$$
(4)

In Figures 1 and 2, the resulting error $|k_{app} - k_{ref}|$ is shown with MN and MD as parameters. Note that the error plots for MN = MD = 3 and those for MN = 4, MD = 3 completely overlap, so increasing the order of only the numerator seems to be ineffective.

$\mathbf{2}$

Figure 1: Error for k between 0 and 1

From tables, like those given in Christian & Eisenmann [2], it follows that it will be reasonable to focus on k values between about 0.6 and 0.9 for representing realistic Cauer filters. For those k's, the Figures show that an approximation based on MN = MD = 3 will be more than sufficient. When larger errors (in the order of not exceeding 10^{-6}) are allowed, even MN = MD = 2 can be tolerated.

For better approximations for k > 0.9, it is of course possible to increase MD or even MD and MN depending on the value of $\frac{K^{'}}{K}$ (or $\frac{K^{'}_{1}}{NK_{1}}$) resulting from the design parameters. In Figure 3, $\frac{K^{'}}{K}$ is shown for $0.9 \le k \le 1.0$.

H.J. Lincklaen Arriëns, November 2002.

References

[1] A.Antoniou, *Digital Filters: Analysis and Design*, McFraw-Hill Book Company (1979)

[2] E. Christian & E. Eisenmann, *Filter Design Tables and Graphs*, John Wiley & Sons, Inc. (1966)

3

Figure 2: Error for k zoomed in to 0.9 to 1

Figure 3: $\frac{K^{'}}{K}$ as a function of k

4