
Design Examples of a 6th Order Symmetrical Band Pass Filter
Huibert J. Lincklaen Arriëns, Januari 2003 ( this revision: Januari, 2005 ).

This document describes the intermediate results obtained when designing a Wave Digital Filter Structure that
shows a 6th order symmetrical transfer function in the discrete-time domain.
The resulting Wave Digital Band Pass Filter (wdbpf) has to conform to the following design constraints:

• it’s pass band has to stretch from ωL =
0.13

fs
to ωH =

0.17

fs
, with an equiripple transfer characteristic not

exceeding 1 dB attenuation,

• the filter has to show transfer zeros in the lower and higher parts of the stop band at respectively 0,
0.1

fs
against

0.2

fs
and

0.5

fs
.

with fs representing the sampling frequency.

First we have to translate these frequency points to the Continuous-Time Domain by doing a ’prewarp’ using the
inverse bilinear transformation

ωCTD = π · tan(fDTD · fs)

where CTD denotes the Continuous-Time Domain and DTD indicates the Discrete-Time Domain. For our
convenience we skip these domain indications as long as it is clear in which domain we are doing our computations.
So, the parameters to be used for calculating our Continuous-Time filter (see Figure 1) now become

N = 6
rp = 1.00000 dB
ωs0 = 0.00000 rad/s
ωs1 = 0.32492 rad/s
ωs2 = 0.72654 rad/s
ωs3 =∞ rad/s

Using the Vlach approximation [Vla69] of the pass band, we can find the frequencies of the 0 dB points to show at

ωp1 = 0.44154 rad/s
ωp2 = 0.50815 rad/s
ωp3 = 0.58085 rad/s

We need to find the Belevitch polynomials f(s), g(s) and h(s) in order to be able to compute the magnitude
transfer function

H(s) =
f(s)

g(s)

and to calculate the element values for the Jaumann structure.
However, although we can immediately write down f(s) and h(s) given the data above, this is not the case for the
g(s) polynomial. We have to find g(s) by first constructing the polynomials f f∗ and hh∗, and deriving g g∗ from

g g∗ = f f∗ + hh∗.
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Figure 1: Magnitude Transfer Function in the Time Continuous Domain.

By substituting jω by s, we obtain g g∗, from which we can finally construct g(s), by noting that this polynomial
has the same poles and zeros as g g∗, but only those in the left hand plane.

For the given 6th order filter, we write

f f∗ = ω2(ω2 − ω2s1)
2(ω2 − ω2s2)

2

and

hh∗ = ε2C2h · (ω2 − ω2p1)
2(ω2 − ω2p2)

2(ω2 − ω2p3)
2

where

ε2 = 0.25893 ( = 10rp/10 − 1 )

C2h = 21569 C2h is chosen such that [HH∗]ω=ωp2 = 1 )

This leads us to

f f∗ = ω10 − 1.2669ω8 + 0.51270ω6 − 0.0706ω4 + 0.0031056ω2, and

hh∗ = 5584.8ω12 − 8830.3ω10 + 5760.6ω8 − 1984.4ω6 + 380.67ω4 − 38.558ω2 + 1.6112

and so to

g g∗ = 5584.8ω12 − 8829.3ω10 + 5759.4ω8 − 1983.9ω6 + 380.60ω4 − 38.555ω2 + 1.6112

from which we derive

g g∗ = 5584.8s12 + 8829.3s10 + 5759.4s8 + 1983.9s6 + 380.60s4 + 38.555s2 + 1.6112
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From this g g∗ we calculate the roots, and keep only those in the left hand plane to get g(s):

g(s) = 74.731s6 + 11.577s5 + 59.971s4 + 6.1295s3 + 15.421s2 + 0.76966s+ 1.2693

We can again write down f(s) and h(s) immediately, viz.

f(s) = s(s2 + ω2s1)(s
2 + ω2s2) = s5 + 0.63344s3 + 0.055728s

h(s) = ± εCh · (s2 + ω2p1)(s
2 + ω2p2)(s

2 + ω2p3)

Here we choose for the + sign, thus

h(s) = 74.731s6 + 59.080s4 + 15.188s2 + 1.2693

Now that we know H(s)

H(s) =
s5 + 0.63344s3 + 0.055728s

74.731s6 + 11.577s5 + 59.971s4 + 6.1295s3 + 15.421s2 + 0.76966s+ 1.2693

we can preview what the transfer function H(z) in the discrete-time domain will look like. We can do this by either

plotting the |H(s)| transfer function with a bilinearly distorted horizontal axis ( arctan
ω

π
instead of ω ), or by

really computing the actual H(z). Both methods result in the transfer function shown in Figure 2.
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Figure 2: Preview of the expected discrete filter characteristic.
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First, however, we will continue with the derivation of a Jaumann design:
Given the f(s), g(s) and h(s) polynomials, we can derive the Tellegen polynomials A,H and C that are needed

for determining the lossless impedances Z1(s) and Z(s) in a Jaumann design.

Since f(s) is an odd order function, we can conclude that also A will be odd:

A =
Odd[g(s)]

2
= 5.7887s5 + 3.0648s3 + 0.38483s

Then

C =
Even[g(s)]− Even[h(s)]

2
= 0.44505s4 + 0.11606s2

and

H =
f(s)

2
= 0.50000s5 + 0.31672s3 + 0.027864s

This means that we now do know Z1(s) and Z2(s), viz.

Z1(s) =
A+H

C
=
6.2887s5 + 3.3815s3 + 0.41269s

0.44505s4 + 0.11606s2
=
6.2887s4 + 3.3815s2 + 0.41269

0.44505s3 + 0.11606s

Z2(s) =
A−H

C
=
5.2887s5 + 2.7480s3 + 0.35697s

0.44505s4 + 0.11606s2
=
5.2887s4 + 2.7480s2 + 0.35697

0.44505s3 + 0.11606s

A closer look at Z2(s) reveals that nominator and denominator share a common factor s2 + 0.26078, caused by
both having roots at±0.510667j. So Z2(s) can be reduced to

Z2(s) =
5.2887s2 + 1.3688

0.44505s

The results thus are a 4th order impedance function for Z1(s) and a 2nd order impedance function for Z2(s).
By performing some simple one port network synthesis, we can find element values with which we should be able

to construct a Jaumann structure in the Continuous- Time domain (
Z1(s)

2
and 2Z2(s) needed ).

L2 23.76682 H
C2 0.16257 F
L1a 7.06517 H
C1b 0.51111 F
L1c 82.19461 H
C1d 0.05134 F

A possible structure with the listed element values is given in Figure 3.
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Figure 3: The Continuous-Time version of the 6th order Jaumann structure with lumped element values.

A1

B1

B2

1

3

2

4

-1

-1

T

T

T

T 3

3

2

2

1

1

Jauman
adapter

-1

T

T

1

1

2

2

3

1

2

4

3

Figure 4: The translation of Figure 3 into a Jaumann structure with 3 port adapters.
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Some implementations with discrete-time structures

In the previous section, we already derived the transfer function H(s) =
f(s)

g(s)
in the s-domain and have found

values describing the f(s) and g(s) polynomials.
We can, of course, also translate this H(s) from the continuous-time domain into a H(z) in the discrete-time
domain using well known procedures. Since we implicitly used the inverse-bilinear transformation method to
derive the specifications of the continuous-time filter, we will describe the results of the bilinear method here. It
implies that we have to substitute

s =
2

T

z − 1
z + 1

( we choose to use T = 2 here )

in f(s) and g(s). We then find ( Note: b3 = 0! )

H(z) =
0.0099439− 0.022235z−1 + 0.019888z−2 − 0.019888z−4 + 0.022235z−5 − 0.0099439z−6
1.0000− 3.3738z−1 + 6.5225z−2 − 7.6002z−3 + 6.0121z−4 − 2.8648z−5 + 0.78246z−6

1
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1/z

 T1

1
In

Figure 5: The band pass filter as a Direct-Form 2 recursive structure.
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Second Order Sections

This H(z) can easily be implemented as a Direct-Form 1 or Direct-Form 2 ( see Figure 5 ) recursive structure.
We will, however, show an alternative implementation with three Second-Order Direct-Form-1 sections. The
multiplication factors to be used in the Second-Order sections can be calculated with MATLAB’s tf2sos-function
from the Signal Processing Toolbox. The general setup of a Second-Order section which can be described with

H(z)2nd order section =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2

is given in Figure 6 (note the signs of the ai-coëfficiënts) and the resulting complete filter can be found in Figure 7.
Compared with the structure in Figure 5 now only 10 (or 9) multipliers are needed instead of 13.
tf2sos gives us:

b0 b1 b2 a1 a2

section 1 1.0000 0.0000 −1.0000 −1.1038 0.8747
section 2 1.0000 −0.6180 1.0000 −0.9409 0.9442
section 3 1.0000 −1.6180 1.0000 −1.3291 0.9475

and an overall g = 0.00994.
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Figure 6: Second-Order Direct-Form 1 section.
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Figure 7: The 6th order bandpass transfer function as implemented with three Second-Order sections.
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IIR Lattice Structure

The IIR lattice structure is another possible structure which can be used here. With MATLAB’s tf2latc-function
(Signal Processing Toolbox), we can calculate the multiplication coëfficiënts to be used in the IIR lattice structure
given in the Simulink models in Figures 8 and 9.

6th order IIR structure with bandpass characteristic coefficients  ( from "wdfbps.m " and "jb pf6.m " ) 
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Figure 8: The overall 6th order IIR lattice structure.
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Figure 9: Version of Submodel Lattice1 using two multipliers.

For this structure, the multiplication constants become

k(1) = −0.60502
k(2) = 0.98286
k(3) = −0.58763
k(4) = 0.97851
k(5) = −0.58011
k(6) = 0.78246

and
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v(1) = −0.00114
v(2) = −0.00409
v(3) = 0.00144
v(4) = 0.00555
v(5) = 0.01194
v(6) = −0.01131
v(7) = −0.00994

The fact that | k(i) | < 1 for all i’s (1 to 6 here) ensures that this filter will be stable.
The transfer characteristics of H(z) and that resulting from a simulation of Figure 8, completely coïncide and
completely confirm to the expected transfer characteristic of Figure 2.
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Figure 10: Version of Submodel Lattice1 using only one multiplier.

Instead of the lattice submodel of Figure 9, it is also possible to use the circuit of Figure 10 which uses only
one multiplier. Although it can be derived that the transfer function (all-pass) from nodes In1 to Out2 for both
submodels is the same, the transfer functions from In1 to Out1 do differ, being a factor (1 + ki) higher for the One
multiplier version. This necessitates that the summing factors v(1) upto v(6) should be adapted according to

v
0
(n) =

v(n)
6Y

m=n

[1 + k(m)]

n = [1, 6]

The result now will be

v(1) = −0.00239
v(2) = −0.00338
v(3) = 0.00236
v(4) = 0.00375
v(5) = 0.01595
v(6) = −0.00635
v(7) = −0.00994
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Lattice Wave Digital Structure

In this section an implementation based on the subtraction of two all-pass function will be described [Gaz85],
[Wan99]. Each all-pass function is built as cascaded Second-order Richards’ structures, if needed –in case of an
odd function– augmented with a First-order Richards’ structure. What exactly is needed here can be derived from
the Tellegen polynomials A, H and C that we found before, or alternatively from the Jaumann impedances Z1(s)
and Z2(s).First, we have to find L and C element values that we can think of to be connected to each other using
circulators. Next, these element values will be used for calculating the multiplication factors in the Richards’
structures.
A block diagram of the discrete-time structure that we will use is given in Figure 11, with an expanded view of the
2nd order sections using 2 port adapters in Figures 12 and 13.

1
B2

A1 B1

2nd order H2

A1 B1

2nd order H1b

A1 B1

2nd order  H1a 

-K-

1/2

1
A1

Figure 11: Lattice Wave Digital Filter.

So we start with writing down the reflection functions of the two all-pass sections:

ρ1(s) =
Z1(s)− 1
Z1(s) + 1

=
A+H −C

A+H +C

ρ2(s) =
Z2(s)− 1
Z2(s) + 1

=
A−H −C

A−H +C

Substituting the A, H and C that we found before, gives us

ρ1(s) =
6.2887s4 − 0.44505s3 + 3.3815s2 − 0.11606s+ 0.41269
6.2887s4 + 0.44505s3 + 3.3815s2 + 0.11606s+ 0.41269

and

11



ρ2(s) =
5.2887s4 − 0.44505s3 + 2.7480s2 − 0.11606s+ 0.35697
5.2887s4 + 0.44505s3 + 2.7480s2 + 0.11606s+ 0.35697

Here again, nominator and denominator of ρ2(s) share a common factor s2 + 0.26078, leaving us

ρ2(s) =
5.2887s2 − 0.44505s+ 1.3688
5.2887s2 − 0.44505s+ 1.3688

Now, we will have to rewrite ρ1(s) and ρ2(s) as cascaded 2nd order sections. Observe that ρ2(s) already is in the
correct form, so we only need to split ρ1(s), e.g. by combining complex conjugated roots:

ρ1(s) =
s2 − 0.032069s+ 0.18871
s2 + 0.032069s+ 0.18871

· s
2 − 0.038700s+ 0.34775
s2 + 0.038700s+ 0.34775

Each 2nd order term describes an LC-series resonator circuit, for which we can immediately find the corresponding
L and C element values:

if ρ(s) =
s2 − a1s+ a2
s2 + a1s+ a2

, then Z(s) =
1 + ρ(s)

1− ρ(s)
, so Ls =

1

a1
and Cs =

a1
a2

.

We thus can derive the following element values:

for ρ1(s):

L1a = 31.1823 H
C1a = 0.16994 F
L1b = 25.8396 H
C1b = 0.11129 F

and

for ρ2(s):
L2 = 11.8834 H
C2 = 0.32513 F

section 1

section 2

1
B1

A1

A2

B1

B2

2port type2

1/z

 T2

1/z

 T1

A1

A2

B1

B2

 2port type2 

1
A1

Figure 12: A Wave Digital Filter translation of a series resonance LC circuit using two 2 port adapters, where section 1
is characterized by αsection 1 and section 2 by αsection 2.
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Figure 13: Implementation of the 2 port type 2 adapter.

For each 2nd order section, we can find the multiplication factors αsection 1 and αsection 2 to be used by a translation
of the corresponding Ls and Cs values based on the bilinear transformation.
It can be derived that

αsection 1 =
Cs − LsCs − 1
Cs + LsCs + 1

and

αsection 2 =
LsCs − 1
LsCs + 1

The final design parameters then become:

for ρ1(s):

αsection 1 = −0.94746
αsection 2 = 0.68250
αsection 1 = −0.94417
αsection 2 = 0.48395

and

for ρ2(s):
αsection 1 = −0.87468
αsection 2 = 0.58879

Again, the resulting magnitude transfer function is exactly identical to the theoretical H(z).

Note
As pointed out in [Gaz85], it is of course possible to skip the intermediate calculation of Ls and Cs values, and
instead use

αsection 1 =
a1 − a2 − 1
a1 + a2 + 1

and

αsection 2 =
1− a2
1 + a2
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Discussion

We derived continuous-time as well as discrete-time domain structures for a band pass filter that was requested
to be symmetrical in the time-discrete domain. Cruxial in the design, is the abillity to compute an equiripple
approximation of a user definable interval in the continuous-time domain with additional user definable zeros in the
stopband, as described in [Vla69]. Resuming, we calculated continuous-time domain solutions for

• a ladder structure, and

• a Jaumann structure,

as well as discrete-time domain solutions for

• a wave digital Jaumann structure,

• a Direct-Form 2 recursive implementation,

• an IIR structure consisting of second-order sections,

• an IIR lattice structure, and finally

• a Lattice Wave Digital structure.

Figure 14: Measured spectrum plot of the 6th order lattice band pass structure implemented on an XC2V1000 FPGA on
a Strathnuey card.
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Er ontbreken nog de stukken waarin

• een tijd-continue ladder structuur berekend wordt,

• de wdf parameters van de Jaumann structuur berekend worden,

• een beschrijving van de implementatie m.b.v. A|RT C en/of the MATLAB/Xilinx System Generator op bijv. de
Xtreme DSP Development Kit met z’n XC2V3000 fpga staat,

• tenslotte de meetresultaten getoond worden
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