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Abstract— The approximation problem in filter design is 

well known. For this purpose we have the Butterworth, 
Chebyshev and Cauer methods, which are all analytical 
methods. Only the Cauer approximation delivers poles in 
the stopband and is optimal in terms of selectivity. The 
poles are directly fixed to the zeros of reflection in the 
passband and are derived by the use of elliptic functions. 

The Sharpe-Chebyshev approximation method obtains 
a Chebyshev approximation in the passband together with 
a free choice of poles in the rest of the complex plane. The 
Sharpe method appears to be the only analytical method 
that delivers this and appears not to be very well known. 

The free choice of poles in the rest of the complex plane 
will be shown to be of importance in the area of micro-
wave unit element filter design and in the case of wave 
digital filter design. 
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I. INTRODUCTION 
The approximation problem in continuous filter design 

is well known. For this purpose often the Butterworth, 
Chebyshev and Cauer methods are used, which are all 
analytical methods. Only the Cauer approximation de-
livers poles in the stopband and is optimal in terms of 
selectivity. The poles are directly related to the reflection 
zeros in the passband and are derived by using elliptic 
functions. 

Lossless ladders are used as prototypes for designing 
microwave unit-element filters. Because of realizability 
constraints it is needed to add unit-elements as all-pass 
sections at both ends of the ladder, shift these unit-
elements into the ladder network by using Kuroda identi-
ties to make sure the ladder becomes realizable. How-
ever, adding unit-elements causes the lossless ladder to 
become of higher order without having the unit-elements 
contributing to the filter amplitude characteristic. This 

shifting into the ladder becomes problematic when reso-
nant circuits are being encountered. 

We show by an example that the Sharpe rational func-
tion approach can remedy this. The Sharpe method de-
livers optimal Chebyshev approximation in the pass-
band, directly related to the total order of the ladder net-
work including the used unit-elements. 

Lossless ladders are also used for prototyping wave 
digital filters [1]. These filters have certain parallelism 
properties inherent in the arithmetical calculations in-
volved. By adding unit-elements to the lossless ladder 
we can change these parallelism properties. So far, this 
suffered from the same drawback, the unit-elements in-
creased the order without contributing to the filter ampli-
tude characteristics. Here also, the Sharpe rational func-
tion approach can give optimal Chebyshev approxima-
tion in the passband taking the unit-elements into ac-
count. 

II. DERIVATION OF THE CHEBYSHEV RATIONAL 
FUNCTION 

The Sharpe method [2] starts by observing that the 
well-known Chebyshev polynomial of order 2 has a plot 
similar to figure 1 and this frequency behavior can also 
be written as in (1), assuming for the time being that  
is a real constant that can be chosen freely: 
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Equation (1) in figure 1 behaves similar to the Che-

byshev polynomial T 2
2 (ω , with 
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Figure 1   Example plot of cos iδ , showing the strong 

resemblance with T 2
2 ( ) cos 2ω Φ= . 
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The angle iδ  varies in the same manner as 2Φ  in the 
interval 1 1ω− ≤ ≤  if the convention is made that the 

sign of 21 ω−  is positive and the sign of 2a 1+  is 
the same as the sign of . Both ia iδ  and  are symmet-
ric about 

2Φ
π and have the same end points. The above 

convention with regard to signs insures that the deriva-
tive ( ) ( )id dδ ω  is always negative which makes iδ  a 
monotonically decreasing function of ω  in the interval 

1 1ω− ≤ ≤ . 

The function 2(F )ω  is already a function of 2ω  
which means that there is no need for it to be squared to 
be used to generate the power scattering transfer func-
tion of a lossless filter terminated in resistances as fol-
lows: 
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We now form the function 
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The variation of 2(F )ω  with ω  is illustrated in figure 

2 for the case of . 3m n+ =
 

2(F )ω  can be expanded in the form 
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Figure 2   Example of 2(F )ω  for the case of m n 3+ =  
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III. AN EXAMPLE 
 
As a simple example to demonstrate the results that 

can be obtained with the Sharpe method we have chosen 
a 3rd order Cauer normalized lowpass from a table [3]: 
 

max

min

03, 25 %,   0.28029 dB,
20.58 dB, 0.6667

C A
A

ρ
ε

= =
= =

 

Attenuation pole 1.74228639pω = , attenuation zero 

0.892921αω = , start of the stopband at 1.55573ω = . 
 
The corresponding lossless ladder network can be 

found from other table books.[4] and is given in figure 3 
as filter A. We will show here how it can be generated 
with the Sharpe method. We choose  and 1m = 2n =  in 
(4) because we have two poles: pjω+  and pjω− . 

For the purpose of clarifying the generation of the 
functions 3 4,   and 5F F F  from (7), corresponding to the 
filters A, B and C of figure 3 we define: 
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For including a unit-element, which is in fact a special 
case of Z with , we define 1ia = +

 

( ) ( )* 2 2, 3 1 2 2 1i iY Y jω ω ω= − ± −   

 Figure 3  Ladder structures and element values of the fil-
ter without unit-elements (A), with one unit-element (B) 
and with two unit-elements (C). 

We obtain for the generation of filter A, from (7): 
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We now add a unit-element to the filter, keeping  
and 

maxA

pω  the same value.  Instead of adding it as an all-

pass, we now add a special pole to 3F  (now 1m =  and 
3n =  in (4)) and obtain as regular 4th order approxima-

tions 4F  and 4F ′ : 
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with 0.892921αω = , 1.74228639pω = , and 

, which is chosen such that 3C =100.855 ( 1)3 1F ω =′ = . 
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We are now able to calculate  as in (8). From this 
we can calculate the impedance 

21S

inZ  as seen from the 
source. Ladder synthesis of inZ  generates the lossless 
ladder filter A, which indeed exactly matches the ele-
ment values given in [4]. 
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 The resulting attenuation functions for each of the 3 
circuits is shown in figure 4 indicating that the unit-
elements are indeed contributing considerably to the 
characteristic. Figure 5 gives detail about the passband 
and figure 6 gives more detail about the stopband. 

in which now 1 0.3813197αω = , 2 0.927936αω =  and 
. 2 587.827C = 6

Proceeding in the same manner as before, we obtain 
filter B.  

  
Finally in this example, we add a second unit-element 

to filter A, which means a 5th order circuit. Again, we 
leave  and maxA pω  the same value. We add again a spe-

cial pole to 4F  (now  and  in (4)) and obtain 

as regular 5th order approximations 

1m = 4n =

5F  and 5F ′ : 
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Figure 5   Passband of the same filters as used in Figure 4. in which now 3 0.561735αω = , 4 0.94783αω =  and 

. 5 3426.11C =  
 Again proceeding in the same manner as before, we 

obtain filter C, which is again symmetrical as expected. 
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Figure 6   Part of the stopband of the same filters as used 
in Figures 4 and 5. 

    
Figure 4   Amplitude transfer functions of the filter with-
out unit-elements (A), with one unit-element (B) and with 
two unit-elements (C). 

Instead of having the unit-elements contributing to the 
stopband attenuation by keeping pω  constant, we might 

also decide to adjust pω  such that the stopband  
remains the same, leaving the unit-elements to contribute 
to the increase in selectivity as is shown in figure 7. 

minA 
It needs to be stressed here, that the sequence in which 

the unit-elements in filter B and C have been extracted, 
is not the only possible one.  
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  Figure 7    Illustrating the increase in selectivity by adding 

unit-elements when the stopband attenuation is kept con-
stant. 

 

IV. CONCLUSIONS AND DISCUSSION 
 
We have shown by a simple example that the Sharpe 
method enables us to force unit-elements to contribute to 
the filter characteristic instead of adding only delay. 
Shifting unit-elements into Cauer type ladders is no 
longer a problem because they can be extracted from inZ  
at any desired moment during the synthesis process. 
The method delivers optimal Chebyshev behavior in the 
passband with a free choice of poles in the stopband that 
can be used to design optimal and realizable microwave 
unit-element filters. 
The method also generates wave-digital filter prototypes 
with different parallelism properties. 
It appears that the method is not well known as it is men-
tioned very little in the filter literature. The method, 
however, is very powerful. It is being described in Vlach 
[5] where the method is transformed to another complex 
variable with the consequence that: 
1. more accuracy is obtained because the calculations 

become simpler, 
2. bandpass filters can be generated (also containing 

unit-elements if needed) with a free choice of at-
tenuation poles. 

Rhodes [6] only mentions the method in a short appen-
dix in his book. 
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