

Delft University of Technology
Faculty of Electrical Engineering,
 Mathematics and Computer Science
Circuits & Systems Group

Scheduling Toolbox
for

MATLAB

Reference Guide

Version 1.0

Ing. H.J. Lincklaen Arriëns
January 2006

Scheduling Toolbox for MATLAB Reference Guide
© H.J. Lincklaen Arriëns 2006

The author assumes no responsibility whatsoever for use of the software by other parties, and makes no
guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
Acknowledgement if the software is used is appreciated.

MATLAB is a registered trademark of The MathWorks, Inc.
Graphviz - Graph Visualization Software has originally been developed by AT&T Research, and is
licensed on an open source basis under The Common Public License. See http://www.graphviz.org/

Scheduling Toolbox for MATLAB Reference Guide ii

http://www.graphviz.org/

Table of Contents

Categorical Listing of Functions ... 2
Alphabetical Listing of Functions ... 4

ALAP.. 5
ALU.. 6
ASAP.. 7
cirInfo... 8
fixp2hex.. 9
forceD... 10
gen_INP ... 11
gen_mTB.. 12
hex2fixp.. 16
listSched... 17
MUL... 18
parse... 19
read_OUT .. 20
showDistrib.. 21
showGraph... 22
toAdjMat .. 23
toSFixp... 24
toUFixp .. 25
view_cir_IO.. 26
xplore ... 27
schedGUI ... 28

Structure and syntax of the .cir file .. 30
Signed fixed-point notation ... 34
Setup of the .INP- and .OUT-files.. 36
Simulation timing setup .. 37
Overview of the Software Environment.. 38
VHDL resources ... 39

Scheduling Toolbox for MATLAB Reference Guide 1

Categorical Listing of Functions

MATLAB resource descriptions simulating their VHDL behavior

ALU Simulate the behavior of the VHDL description of a registered ALU.
MUL Simulate the behavior of the VHDL description of a MULtiplier.

Scheduling functions

ALAP Find the SSG using the ALAP method.
ASAP Find the SSG using the ASAP method.
forceD Find the SSG using the Force Directed Scheduling method.
listSched Find the SSG using a List Scheduling method.

Fixed-point translation and manipulation functions

fixp2hex Convert a signed value to a hex string represented by fxd-bits.

hex2fixp
Convert a hex string given by fxd-bits into its signed decimal
equivalent.

toSFixp Converts a signed fractional value to fit in SFxd bits.
toUFixp Converts a signed fractional value to fit in UFxd bits.

Info, Graph and schedule viewers

cirInfo Extract and display some information from a .cir-file.
read_OUT Convert the hex data in an .OUT-file into decimal format.
schedGUI M-file for schedGUI.fig
showDistrib Plot resource usage versus clock STATEs.
showGraph Converts 'graph.dot' to an image and opens a viewer to show it.
view_cir_IO Graphical view of input circuit description.
xplore Plot design evaluation space information for a cir-file description.

Testbench and MATLAB / VHDL file generators

gen_mTB Create MATLAB reference testbench files.
gen_VHD Create testbench, wrapper and SSG-module VHDL-files.

Scheduling Toolbox for MATLAB Reference Guide 2

Utilities, mostly for internal use only

axDrag2 Pan and zoom with mouse and simple keystrokes.
groupIOs For internal use only.
hpgPlot Plot a .hpg-file in schedGUI’s preview window.
lifeTimes For internal use only (registered outputs in resources assumed).
mapResources For internal use only (registered outputs in resources assumed).
parse Read and convert a .cir-file into internal data format.
schedule Determines a time schedule (SSG).
showREGs Plot REGister usage.
startup Setup paths for msclab_et4054.
toAdjMat Converts an interconnection table into an adjacency matrix.

Graphical User Interface

schedGUI GUI that combines most of the above mentioned functions.

Scheduling Toolbox for MATLAB Reference Guide 3

Alphabetical Listing of Functions

for general use

ALAP Find the SSG using the ALAP method.
ALU Simulate the behavior of the VHDL description of a registered ALU.
ASAP Find the SSG using the ASAP method.
cirInfo Extract and display some information from a .cir-file.
fixp2hex Convert a signed value to a hex string represented by fxd-bits.
forceD Find the SSG using the Force Directed Scheduling method.
gen_INP Write data into the correct format for an .INP-file.
gen_mTB Create MATLAB reference testbench files.
gen_VHD Create testbench, wrapper and SSG-module VHDL-files.

hex2fixp
Convert a hex string given by fxd-bits into its signed decimal
equivalent.

listSched Find the SSG using a List Scheduling method.
MUL Simulate the behavior of the VHDL description of a MULtiplier.
parse Read and convert a .cir-file into internal data format.
read_OUT Convert the hex data in an .OUT-file into decimal format.
schedGUI M-file for schedGUI.fig
showDistrib Plot resource usage versus clock STATEs.
showGraph Converts 'graph.dot' to an image and opens a viewer to show it.
toAdjMat Converts an interconnection table into an adjacency matrix.
toSFixp Converts a signed fractional value to fit in SFxd bits.
toUFixp Converts a signed fractional value to fit in UFxd bits.
view_cir_IO Graphical view of input circuit description.
xplore Plot design evaluation space information for a cir-file description.

for internal use only

axDrag2 Pan and zoom with mouse and simple keystrokes.
groupIOs For internal use only.
hpgPlot Plot a .hpg-file in schedGUI’s preview window.
lifeTimes For internal use only (registered outputs in resources assumed).
mapResources For internal use only (registered outputs in resources assumed).
schedule Determines a time schedule (SSG).
showREGs Plot REGister usage.
startup Setup paths for msclab_et4054.

Scheduling Toolbox for MATLAB Reference Guide 4

ALAP

Purpose Find the SSG using the ALAP method.

Syntax tFrames = ALAP(adjMat,delayVec)

Description tFrames = ALAP(adjMat,delayVec) returns a two-column vector tFrames
describing the SSG (Scheduled Sequencing Graph) of the operations when
scheduled according to the ALAP (As Late As Possible) method (no resource
constraints).
The unscheduled flow has to be given in adjMat with the clock delays per
resource type (e.g. MUL, ALU) as integer number of clock cycles specified in
delayVec.

Examples

See Also ASAP Find the SSG using the ASAP method.
forceD Find the SSG using the Force Directed Scheduling method.
listSched Find the SSG using the List Schedu;ing method.
parse Read and convert a .cir-file into internal data format.
toAdjMat Converts an interconnection table into an adjacency matrix.

Scheduling Toolbox for MATLAB Reference Guide 5

ALU

Purpose Simulate the behavior of the VHDL description of a registered ALU.

Syntax result = ALU(op1,op2,fxd, opcode)

Description result = ALU(op1,op2,fxd, opcode) returns the result of the operation as
specified in opcode. Here op1 and op2 are two signed fixed-point input
variables, while result is the output in the same signed fixed-point format. This
format has to be given in the vector fxd as [N M], where N denotes the total
number of bits, while M defines the number of fractional bits.
Valid opcodes are 'add' and 'sub'.

[result,overflow] = ALU(op1,op2,fxd, opcode,ovMode) also signals the
correctness of the result in 'overflow'. A zero means that the result is
unaltered and correct, overflow = 1 means that the result has been 'wrapped'
(e.g. bits left of msb has been skipped) if ovMode = 'wrap' (the default choice),
or has been saturated to its highest positive value or lowest negative value when
ovMode = 'sat' has been specified.

Examples

See Also MUL simulate the behavior of the VHDL description of a registered multiplier.

Scheduling Toolbox for MATLAB Reference Guide 6

ASAP

Purpose Find the SSG using the ASAP method.

Syntax tFrames = ASAP(adjMat,delayVec)

Description tFrames = ASAP(adjMat,delayVec) returns a two-column vector tFrames
describing the SSG (Scheduled Sequencing Graph) of the operations when
scheduled according to the ASAP (As Soon As Possible) method (no resource
constraints).
The unscheduled flow has to be given in adjMat with the clock delays per
resource type (e.g. MUL, ALU) as integer number of clock cycles specified in
delayVec.

Examples

See Also ALAP Find the SSG using the ALAP method.
forceD Find the SSG using the Force Directed Scheduling method.
listSched Find the SSG using the List Schedu;ing method.
parse Read and convert a .cir-file into internal data format.
toAdjMat Converts an interconnection table into an adjacency matrix.

Scheduling Toolbox for MATLAB Reference Guide 7

cirInfo

Purpose Extract and display some information from a .cir-file.

Syntax cirInfo(cirFilename)

Description cirInfo lists in the console window the total number of operations, and the
numbers of multiplications, ALU operations, coefficients, and delay elements.
Also the number of external inputs and outputs are listed, followed by the input
and output identifier names.
cirInfo can be used as a first test to check a .cir-file for the absence of errors.

Examples >> cirInfo('FIR5.cir')
totally 11 operations, of which
 6 multiplications, and
 5 ALU operations.
 6 constant coefficients
 5 delay elements
 1 input(s) : i0
 1 output(s): o5
>>

See Also

Scheduling Toolbox for MATLAB Reference Guide 8

fixp2hex

Purpose Convert a signed value to a hex string represented by fxd-bits.

Syntax hexStr = fixp2hex(decVal,fxd)

Description hexStr = fixp2hex(decVal,fxd) checks whether the decimal figure decVal
fits in the given fxd bits and if so, returns its hexadecimal representation as a
string.
fxd is supposed to be a two-element vector [N M], where N defines the total
number of available bits and M defines the number of bits to the right of the
binary point.
If M is too low to exactly represent decVal, decVal will be truncated.
An error message is issued when N-M should be too low to represent the signed
integer part of decVal.
decVal itself can be a vector of fractional decimals.

Examples

See Also hex2fixp Convert a hex string given by fxd-bits into its signed decimal
 equivalent.
toSFixp Converts a signed fractional value to fit in SFxd bits.
toUFixp Converts an unsigned fractional value to fit in UFxd bits.

Scheduling Toolbox for MATLAB Reference Guide 9

forceD

Purpose Find the SSG using the Force Directed Scheduling method.

Syntax tFrames = forceD(adjMat,mulOps)

Description tFrames = forceD(adjMat,mulOps) returns a two-column vector tFrames
describing the SSG (Scheduled Sequencing Graph) of the operations when
scheduled according to the Force Directed Scheduling method with optimal
resource distribution.
NOTE: At the moment, the latency of the resources (MUL, ALU) is expected
 to be one clock cycle.
The unscheduled flow has to be given in adjMat, while in the vector mulOps the
resource type of the operations should be specified (a 1 means a multiplication).

Examples

See Also ALAP Find the SSG using the ALAP method.
ASAP Find the SSG using the ASAP method.
listSched Find the SSG using the List Schedu;ing method.
parse Read and convert a .cir-file into internal data format.
toAdjMat Converts an interconnection table into an adjacency matrix.

Reference Force-Directed Scheduling for the Behavioral Synthesis of ASIC's,
Pierre G. Paulin and John P. Knight,
IEEE Trans on Computer-Aided Design, Vol. 8, No. 6, JUNE 1989, pages 661-679

Scheduling Toolbox for MATLAB Reference Guide 10

gen_INP

Purpose Write data into the correct format for an .INP-file.

Syntax gen_INP(inpFilename,fxd,coeffs,inpSig)

Description gen_INP(inpFilename,fxd,coeffs,inpSig) creates the file inpFilename and
writes sequentially first all coefficients line by line, and next inpSig line by
line in a VHDL hex representation of the fxd format to this file. The format and
the start of the coefficients and the input sections will be marked with comment
lines. All data values are ‘rounded’ before they are converted to fixed-point.

Examples >> load coeffs_FIR5.mat
>> coeffs
coeffs =
 'c0' [-0.07556556070608]
 'c1' [0.09129209297815]
 'c2' [0.47697917208036]
 'c3' [0.47697917208036]
 'c4' [0.09129209297815]
 'c5' [-0.07556556070608]
>> gen_INP('FIR5.INP', [17 15], coeffs, -1:0.4:1)
>> type FIR5.INP

-- [17 15] fixed-point format
-- coefficients: c0,c1,c2,c3,c4,c5
x"1F654"
x"00BAF"
x"03D0E"
x"03D0E"
x"00BAF"
x"1F654"
-- input function
x"18000"
x"1B333"
x"1E666"
x"0199A"
x"04CCD"
x"08000"
>>

.INP-file format See Chapter “INP and OUT-files”.

See Also read_OUT Convert the hex data in an .OUT-file into decimal format.

Scheduling Toolbox for MATLAB Reference Guide 11

gen_mTB

Purpose Create MATLAB reference testbench files.

Syntax gen_mTB(cirFilename,toScreen,schedMethod,varargin)

coeffsSeq = GEN_MTB(cirFilename,toScreen,schedMethod,varargin)

Description gen_mTB(cirFilename,toScreen,schedMethod,varargin) creates two
MATLAB files:
a description of the SSG given in cirFilename, and a testbench-file which calls
this SSG.
If toScreen is 1, these are written to the screen; if 0, they are written to disk.
If cirFilename should be NAME.cir, they can be found in (a newly created
directory) NAME\matlab.
• The (top-level) testbench-file will be named testbench_NAME_auto.m (see its

HELP function), the SSG-file TB_NAME_auto.m. Input data for the testbench
is expected to be found (line by line) in a (user created) file named NAME.INP,
and output will be written to a file NAME.OUT, both in the directory
NAME\matlab.

schedMethod specifies the scheduling method to be used, and can be 'ASAP',
'ALAP', 'forceD' or 'LIST'.
The parameters that follow schedMethod (indicated with varargin here) are
dependant on the method chosen, and may be values for delayMUL, delayALU,
nMULs and/or nALUs:
• delayMUL and delayALU are the latencies of resp. MULtipliers and ALUs in

integer multiples of a clock cycle. They are optional for 'ASAP' and 'ALAP'
(default, if not specified, is 1 cycle each). At this moment they are not needed
for 'forceD' (both fixed to 1). For the 'LIST' method, each of the delays
needs to be specified.

• nMULs and nALUs are the number of available MULtipliers and ALUs, and
have to be specified for the 'LIST' method only.

coeffsSeq = gen_mTB(cirFilename,toScreen,schedMethod,varargin) also
returns the names and the order of the coefficients that are expected in the
.INP-file.

NOTE 1: gen_mTB expects to be run from the directory in which the .cir-file
resides.
NOTE 2: The fixed-point format of the .INP-file should always match the
format that is passed to the testbench.

Examples gen_mTB('my_file.cir', 1, 'asap')

gen_mTB('my_file.cir', 0, 'alap', 2,1)

gen_mTB('my_file.cir', 0, 'forceD')

coeffsSeq = gen_mTB('my_file.cir', 0, 'list', 1,1, 3,2)

>> help testbench_my_file_auto
 Syntax: TESTBENCH_ my_file_AUTO(SFxd3,DBG)

Scheduling Toolbox for MATLAB Reference Guide 12

 SFxd3 defines width of signed fractional fixed-point databus
 in vector [N M x], where N is the total number of bits of the
 external I/O bus from which M are fractional bits.
 x defines an additional number of bits with which N should be
 extended inside the SSG.
 If DBG = 1, intermediate results are printed.
 Needs 'MY_FILE.INP' in current directory to read input data from,
 writes 'MY_FILE.OUT' with results.

.INP-file format See Chapter “INP and OUT-files”.

See Also gen_VHD Create testbench, wrapper and SSG VHDL-files.

Scheduling Toolbox for MATLAB Reference Guide 13

gen_VHD

Purpose Create testbench, wrapper and SSG-module VHDL-files.

Syntax gen_VHD (cirFilename,SFxd3,toScreen,schedMethod,varargin)

Description gen_VHD(cirFilename,SFxd3,toScreen,schedMethod,varargin) creates the
VHDL files needed for simulation and synthesis (a testbench, a wrapper and the
SSG-module VHDL-files).
SFxd3 should be a 3-element vector [N M x], in which N indicates the external
buswidth (signed fixed-point), M the number of bits of N to be used for the
fraction part, and x an additional number of bits for extending (the whole-
number part of) N inside the SSG (to allow for intermediate results greater or
less than can be represented with N bits).
If toScreen is 1, the files are written to the screen; if 0, they are written to disk.
If cirFilename should be NAME.cir, they can be found in (a newly created
directory) NAME\vhdl.
The (top-level) testbench-file will be named testbench_NAME_auto.vhd, the
wrapper file NAME_auto.vhd, and the SSG-file NAME_SSG_auto.vhd.
For simulation all vhd-files placed in the directory are needed, e.g. also the files
resources_regd.vhd and txt_util2.vhd. Input data for the testbench is
expected to be found (line by line) in a (user created) file named NAME.INP, and
output will be written to a file NAME.OUT
Synthesis needs the files resources_reg.vhd, NAME_SSG_auto.vhd and as top
level file NAME_auto.vhd.

schedMethod specifies the scheduling method to be used, and can be 'ASAP',
'ALAP', 'forceD' or 'LIST'.
The parameters that follow schedMethod (indicated with varargin here) are
dependant on the method chosen, and may be values for delayMUL, delayALU,
nMULs and/or nALUs:
• delayMUL and delayALU are the latencies of resp. MULtipliers and ALUs in

integer multiples of a clock cycle. They are optional for 'ASAP' and 'ALAP'
(default, if not specified, is 1 cycle each). At this moment they are not needed
for 'forceD' (both fixed to 1). For the 'LIST' method, each of the delays
needs to be specified.

• nMULs and nALUs are the number of available MULtipliers and ALUs, and
have to be specified for the 'LIST' method only.

NOTE 1: gen_VHD expects to be run from the directory in which the .cir-file
resides.
NOTE 2: The fixed-point format of the .INP-file should always match the
format that is passed to the testbench.

Examples gen_VHD('my_file.cir', [16 15 0], 1, 'asap')

gen_VHD('my_file.cir', [16 15 2], 0, 'alap', 2,1)

gen_VHD('my_file.cir', [32 30 4], 0, 'forceD')

gen_VHD('my_file.cir,' [24 20 8], 0, 'list', 1,1, 3,2)

Scheduling Toolbox for MATLAB Reference Guide 14

The command
 >> gen_VHD('FIR5.cir', [17 15 1], 0, 'asap')

will result in an entity definition in FIR5_auto.vhd that looks like:
entity FIR5 is

 generic (N_g : positive := 17;

 M_g : positive := 15;

 NX_g : positive := 18;

 MUL_delay_g : Time := 5 ns;

 ALU_delay_g : Time := 2 ns;

 REG_delay_g : Time := 2 ns);

 port (Clk : in std_logic;

 Reset : in std_logic;

 New_Sample : in std_logic;

 C0 : in std_logic_vector(N_g-1 downto 0);

 C1 : in std_logic_vector(N_g-1 downto 0);

 C2 : in std_logic_vector(N_g-1 downto 0);

 C3 : in std_logic_vector(N_g-1 downto 0);

 C4 : in std_logic_vector(N_g-1 downto 0);

 C5 : in std_logic_vector(N_g-1 downto 0);

 I0 : in std_logic_vector(N_g-1 downto 0);

 O5 : out std_logic_vector(N_g-1 downto 0);

 Done : out std_logic;

 Error : out std_logic

);

end FIR5;

See Also gen_mTB Create MATLAB reference testbench files.

Scheduling Toolbox for MATLAB Reference Guide 15

hex2fixp

Purpose Convert a hex string given by fxd-bits into its signed decimal equivalent.

Syntax decVal = hex2fixp(hexStr,fxd)

Description decVal = hex2fixp(hexStr,fxd) converts hexStr into a (possibly fractional)
signed decimal value in fxd bits.
fxd is supposed to be a two-element vector [N M], where N defines the total
number of available bits and M defines the number of bits to the right of the
binary point.
An error message is issued when decVal cannot be represented in the given
fxd bits.
hexStr can be an array of strings.

NOTE: usually MATLAB’s 'format long' will be necessary to represent the
result with enough decimals (avoid rounding to 'short' format).

Examples

See Also fixp2hex Convert a signed value to a hex string represented by fxd-bits.
toSFixp Converts a signed fractional value to fit in SFxd bits.
toUFixp Converts an unsigned fractional value to fit in UFxd bits.

Scheduling Toolbox for MATLAB Reference Guide 16

listSched

Purpose Find the SSG using a List Scheduling method.

Syntax tFrames = listSched(adjMat,delayVec,mulOps,nMULs,nALUs)

Description tFrames = listSched(adjMat,delayVec,mulOps,nMULs,nALUs) returns a two-
column vector 'tFrames' describing the SSG (Scheduled Sequencing Graph) of
the operations when scheduled according to a specified List Scheduling method
under resource constraints. The unscheduled flow has to be given in adjMat
with the latency per resource type (e.g. MUL, ALU) as integer number of clock
cycles specified in delayVec.
In the vector mulOps the resource type of the operations should be given (a 1
means a multiplication), and the available numbers of resources in nMULs and
nALUs.

Examples

See Also ALAP Find the SSG using the ALAP method.
ASAP Find the SSG using the ASAP method.
listSched Find the SSG using the List Schedu;ing method.
parse Read and convert a .cir-file into internal data format.
toAdjMat Converts an interconnection table into an adjacency matrix.

Scheduling Toolbox for MATLAB Reference Guide 17

MUL

Purpose Simulate the behavior of the VHDL description of a registered MULtiplier.

Syntax result = MUL(op1,op2,fxd)

Description result = MUL(op1,op2,fxd) returns the (signed) result of the multiplication of
op1 and op2 (both signed).
The binary fixed-point format of result, as well as that of op1 and op2 should
be given in the vector fxd as [N M], where N denotes the total number of bits,
while M defines the number of fractional bits.

Examples

See Also ALU simulate the behavior of the VHDL description of a registered ALU.

Scheduling Toolbox for MATLAB Reference Guide 18

parse

Purpose Read and convert a .cir-file into internal data format.

Syntax CIRC_Data = parse(inFilename)

Description CIRC_Data = parse(inFilename) extracts data from a textual circuit
description in a .cir-file. The data returned in the structure CIRC_Data contains
the following fields.
 CIRC_Data.iocDef

 CIRC_Data.iconnTbl
 CIRC_Data.xconnTbl

 CIRC_Data.opTypes

 CIRC_Data.opNames

 CIRC_Data.inpNames

 CIRC_Data.outNames

 CIRC_Data.dlydInps

CIRC_Data.iocDef is a string defining the characters that are used as the first
character in an opName to identify inputs, outputs and constant coefficients with.
CIRC_Data.iconnTbl is a (number of operations x 4) array that describes the
interconnections between the operations. The first column list the operation
identification numbers (opid#), where the corresponding type and name of an
opid# can be found in CIRC_Data.opTypes and CIRC_Data.opNames respectively.
Columns 2 and 3 list the opid#s of the operations that are connected to this
opid#’s inputs. A negative sign is used to indicate that the input is connected to
an input port (inp#), the name of which can be found as entry inp# in the cell-
vector CIRC_Data.inpNames.
Output ports (outp#) are given in column 4, while their names are listed in
CIRC_Data.outNames.
If no shift operations (<< or >>) are present, iconnTbl is a one dimensional
(number_of_operations,4) array, else a (number_of_operations,4,2) array.

opTypes: mul, add, sub, …

CIRC_Data.xconnTbl

CIRC_Data.dlydInps

Examples

See Also GroupIOs …

Scheduling Toolbox for MATLAB Reference Guide 19

read_OUT

Purpose Convert the hex data in an .OUT-file into decimal format.

Syntax y = READ_OUT(outFilename,fxd2)

y = READ_OUT(outFilename,fxd2,nOutputs)

y = READ_OUT(outFilename,fxd2,nOutputs,nFracDigits)

Description y = READ_OUT(outFilename,fxd2) returns the hex data as read from
outFilename in a decimal format specified by the vector fxd2 ([N M] fixed-point
format). Output is also displayed in the console window.

y = READ_OUT(outFilename,fxd2,nOutputs) should be used if the circuit for
which outFilename is valid, shows more then one outputs. y will become a
column vector with as many rows as given by nOutputs .

y = READ_OUT(outFilename,fxd2,nOutputs,nFracDigits) can be used to limit
the number of fractional digits that are displayed in the console window (default
the sum of the numbers of digits for the whole part, the fractional point and for
the fractional part together is 17).

Examples >> o5 = read_OUT('FIR5\vhdl\FIR5.OUT',[17 15],1,5);
 1: x"00000" = 0.00000
 2: x"00000" = 0.00000
 3: x"00000" = 0.00000
 4: x"1F654" = -0.07556
 5: x"00203" = 0.01572
 6: x"03F11" = 0.49271
 7: x"07C1F" = 0.96970
 8: x"087CE" = 1.06097
 9: x"07E22" = 0.98541
 10: x"07E22" = 0.98541
 11: x"07E22" = 0.98541
 12: x"07E22" = 0.98541
 13: x"07E22" = 0.98541

.INP-file format See Chapter “INP and OUT-files”.

See Also gen_INP Write data into the correct format for an .INP-file.

Scheduling Toolbox for MATLAB Reference Guide 20

showDistrib

Purpose Plot resource usage versus clock STATEs.

Syntax showDistrib(cirFilename,schedMethod,varargin)

Description showDistrib(cirFilename,schedMethod,varargin) determines and plot the
usage of the MULtipliers and ALUs for the circuit described in cirFilename,
when scheduled with the method defined with schedMethod and the optionally
additional parameters in varargin.
schedMethod specifies the scheduling method to be used, and can be 'ASAP',
'ALAP', 'forceD' or 'LIST'.
The parameters in varargin are dependant on the method chosen, and may be
values for delayMUL, delayALU, nMULs and/or nALUs:
• delayMUL and delayALU are the latencies of resp. MULtipliers and ALUs in

integer multiples of a clock cycle. They are optional for 'ASAP' and 'ALAP'
(default, if not specified, is 1 cycle each). At this moment they are not needed
for 'forceD' (both fixed to 1). For the 'LIST' method, each of the delays
needs to be specified.

• nMULs and nALUs are the number of available MULtipliers and ALUs, and
have to be specified for the 'LIST' method only.

Examples >> showDistrib('fir5.cir','forceD')

See Also

Scheduling Toolbox for MATLAB Reference Guide 21

showGraph

Purpose Converts 'graph.dot' to an image and opens a viewer to show it.

Syntax showGraph(gFormat)

Description SHOWGRAPH(gFormat) displays the image- file that is described in 'graph.dot',
using the intermediate file 'graph.xxx' where xxx is replaced by the string
given in gFormat. Valid formats are 'png', 'jpg' and 'hpg'.
Usually, 'graph.dot' will have been created by schedGUI or by schedule.m.

Examples

See Also view_cir_IO Graphical view of cir-file description with In- and Outputs shown.

Scheduling Toolbox for MATLAB Reference Guide 22

toAdjMat

Purpose Converts an interconnection table into an adjacency matrix.

Syntax adjMat = TOADJMAT(iconnTbl)

Description adjMat = TOADJMAT(iconnTbl), where iconnTbl usually will be the
CIRC_Data.iconnTbl output from parse.m. The adjMat is a.o. needed as input
for the scheduling routines such as ASAP, ALAP, etc.

Examples

See Also parse Read and convert a .cir-file into internal data format.

Scheduling Toolbox for MATLAB Reference Guide 23

toSFixp

Purpose Converts a signed fractional value to fit in SFxd bits.

Syntax SFixValue = toSFixp(decVal,SFxd)

Description SFixValue = toSFixp(decVal,SFxd) truncates (= towards minus infinity), if
needed, the signed decimal fractional decVal to fit in the given SFxd bits and
returns it in SFixValue.
SFxd is supposed to be a two-element vector [N M], where N defines the total
number
of available bits and M defines the number of bits to the right of the binary point.
decVal can be a vector of signed fractional decimals.

SFixValue = toSFixp(decVal,SFxd,’round’) can be used to do a rounding
operation instead of just a truncation.

Examples

See Also fixp2hex Convert a signed value to a hex string represented by fxd-bits.
hex2fixp Convert a hex string given by fxd-bits into its signed decimal
 equivalent.
toUFixp Converts an unsigned fractional value to fit in UFxd bits.

Scheduling Toolbox for MATLAB Reference Guide 24

toUFixp

Purpose Converts an unsigned fractional value to fit in UFxd bits.

Syntax UFixValue = toUFixp(decVal,UFxd)

Description UFixValue = toUFixp(decVal,UFxd) truncates (= towards minus infinity), if
needed, the unsigned decimal fractional decVal to fit in the given UFxd bits and
returns it in UFixValue.
UFxd is supposed to be a two-element vector [N M], where N defines the total
number
of available bits and M defines the number of bits to the right of the binary point.
decVal can be a vector of signed fractional decimals.

Examples

See Also fixp2hex Convert a signed value to a hex string represented by fxd-bits.
hex2fixp Convert a hex string given by fxd-bits into its signed decimal
 equivalent.
toSFixp Converts a signed fractional value to fit in UFxd bits.

Scheduling Toolbox for MATLAB Reference Guide 25

view_cir_IO

Purpose Graphical view of cir-file description with In- and Outputs shown.

Syntax view_cir_IO(cirFilename)

Description view_cir_IO(cirFilename) shows the Data Flow Graph that is extracted from
the circuit-file cirFilename in a platform specific viewer.
An intermediate file graph_io.png will be written in the current directory.

view_cir_IO(cirFilename,outType), where outType is a string, can be used to
specify different formats of the graph_io-file.
Valid formats besides 'png' are: 'hpg', 'jpg', ...
If outType is empty, the 'png' format will be used.

view_cir_IO (cirFilename,outType,topBottom) can be used to specify whether
the in and output connections may be displayed inside the graph (topBottom =
0, the default value), or should be put on seperate top and bottom lines outside
the graph (topBottom = 1).

Examples

See Also showGraph Opens a viewer to show image-file 'graph.xxx'.

Scheduling Toolbox for MATLAB Reference Guide 26

xplore

Purpose Plot design evaluation space information for a cir-file description.

Syntax xplore(cirFilename)

xplore(cirFilename,costFacs)

xplore(cirFilename,costFacs,delayMUL,delayALU)

Description xplore(cirFilename) estimates the area or cost involved by different
implementations of cirFilename based on the numbers of MULtipliers and
ALUs available (and consequently the number of REGisters needed).
All registers are taken into account, i.e. the registers needed for life-time
extension, but also the feedback register (if present) and registers for each input
and each output.

xplore(cirFilename,costFacs) controls the relative areas, that are taken by
MULtipliers, ALUs and REGisters with the vector costFacs. This should be a
three element vector giving user definable costs factors for
[mulCost aluCost regCost], e.g. [2 1.2 0.8].

xplore(cirFilename,costFacs,delayMUL,delayALU) will perform the
scheduling computations with the specified delayMUL and delayALU (both
given in integer number of clock cycles).

Examples

See Also

Scheduling Toolbox for MATLAB Reference Guide 27

schedGUI

The Graphical User Interface schedGUI can be used for quickly judging and comparing the results of
different scheduling methods and scheduling parameters. It assumes a screen resolution of at least
1280 x 1024 to be displayed completely.

The tool can be started with schedGUI or (unfortunately not on MATLAB releases before R14) with
schedGUI('cirDir'). In case cirDir is specified, this will be schedGUI's startup directory, otherwise
schedGUI is started from the current directory. One of the .cir-files present in the startup directory
can be selected for a scheduling operation.
Available scheduling methods are ASAP, ALAP, Force Directed and a List method. The List method is
the only resource constrained method and needs to be informed how many multipliers and ALUs may
be used at the same time.
With the ASAP, ALAP and List method, the latencies of the multipliers and ALUs can be specified (in
numbers of integer clock cycles). By default, all resources will have a latency of only one clock cycle.

 cirDir Preview Window

miscellaneous info
Figure 1. Screen-shot of the SchedGUI.

Scheduling Toolbox for MATLAB Reference Guide 28

The result of the scheduling process, the SSG, (executed after pressing the Preview Scheduled Graph
button) will be made visible in the preview window. It is possible to pan and zoom out or in on this
SSG with the mouse or some predefined keys (see the Menu item Help --> PreviewPane Options).
Together with the SSG, additional information about the distribution of the multipliers and ALUs and
the additional number of memory registers is listed.
The resulting SSG can then be written to an image file by pressing the Save Graph button. Supported
formats in this case are 'png' and 'jpg'.
Switching to another cirDir is possible by selecting the Menu item File --> Set Input Folder.
There is also a Menu item File --> Print Preview, but this one is not yet fully functional.

Drawing of the graphs is accomplished with the aid of software provided by the Graphviz (Graph
Visualization Software) package. This software has originally been developed by AT&T Research, and
is extended with additional tools in the course of time. Nowadays, it is licensed on an open source basis
under The Common Public License. See also http://www.graphviz.org/

Scheduling Toolbox for MATLAB Reference Guide 29

http://www.graphviz.org/

Structure and syntax of the .cir file

The input for the scheduling software is an ASCII text file (distinguishable by the extension '.cir'), in
which basically all assignments (e.g. the operations to be performed) are written line by line.
In the cir-file, one has to describe the operations that can be scheduled (a textual representation of a
sequencing graph (SG)), and how this SG is connected to the outer world. Here, we will use an
additional layer –the ‘feedback and external I/O layer’– around the SG (which after scheduling will be
an SSG) in which all feedback operations and connections have to be described: this information is
thus a part of the cir-file, although not subjected to the scheduling process.

In fact, the cir-file is a description of a complete circuit
(or circuit module).

R R R

outside SSG inside SSG

N bits () bitsN+x

[]N.M [()]N+x .M

different buswidths:

binary point aligned

(S)SG

feedback and
ext I/O layer

in0

In0

i1

I1

Clk

Start

Reset

Done

Error

c0

C0

c1

C1

c2

C2

coefficients

o1

i2

To1

O2

o2 o3

i4

To3

o4

i5

To4

v0
mul

s1
add

v1
mul

v2
mul

s2
add

v3
mul

v4
mul

s3
add

v5
mul

s4
add

s5
add

Figure 2. Concept of the cir-file description.

Scheduling Toolbox for MATLAB Reference Guide 30

The concept of this setup is shown in Figure 2, for an arbitrary imaginable circuit with 2 external
inputs, 1 external output and 3 coefficients.

The operations that are supported in the (S)SG are multiplications (integer shifts, see later), addition
and subtractions. The feedback layer is intended for delay elements (registers) and connections.
Connections between feedback layer and (S)SG vice versa, and connections to the outside world are
established through Input Ports and Output Ports.
This hierarchy will be maintained when the cir-file is translated into MATLAB m-files and/or when
translated into VHDL-entities and architectures.

There are some simple rules that should apply for the .cir-file to be valid:

Operations −which perform a multiplication, addition or subtraction− should be identified by a
unique 'identifier' name. Such identifiers are also required for all input ports, output ports and
coefficient ports. Delays are not part of the (S)SG and are connected to the (S)SG through (internal)
input and output ports.

Identifiers are case sensitive and may consist only of characters and figures. The first character of an
identifier indicates whether the identifier applies to an operation, input port, etc.
By default, identifiers starting with an

‘i’ are reserved for input ports,

‘o’ are reserved for output ports,

‘a’ or ‘c’ are referring to coefficients (a special kind of inputs),

while all remaining characters can be used to indicate an operation (diacritic characters, underscores,
etc. are not allowed).

Each operation will have two (2) inputs and one (1) output:

• Inputs are either connected to a previously terminated operation or an input port.
• An input which only appears at the right hand side(s) of (an) assignment(s), and never at a left

hand side, is considered to be connected to an external input port.
• The output can be either connected to a next-in-line operation or to an output port.
• The result (e.g. the output) of an operation will have the same identifier name as the operation

itself.
• Floating input or outputs, as well as floating input ports and output ports, are considered

erroneous.

An Assignment should have the form

 identifier = identifier operator identifier with possible operators ‘∗’, ‘+’ and ‘−‘
or
 output port = identifier
or
 input port = Toutput port which involves a delayed feedback register
and can be optionally terminated with a ';'
e.g.

v1 = v2 + v3;

i2 = To1;

Only one assignment per line is allowed.

Note that an input of an operation can be implicitly connected to an input port, as in

v1 = v2 - i1;

but that outputs have to be explicitly connected to (only one) operation, e.g.
o3 = v1;

Scheduling Toolbox for MATLAB Reference Guide 31

Also note that it is common sense, given the fact that the names are displayed in output plots, to use
relatively short identifiers.

Multiplications that are powers of 2 can be handled more efficiently by using a ‘shift’ operation. In
hardware, such a shift is just a change in bit-line interconnect.
A shift operation in the cir-file can be specified using the '>>' or '<<' operators.
A shift operation should consist of

• the identifier of the operation, the result of which should be shifted, or an input that should be
shifted.

• the shift operator, indicating the direction of the shift: << means a shift to the left (output value
is larger than original value), while >> means a shift to the right (decreased output value, power
of negative value)

• the integer number of bits (powers of two) to be shifted
this all surrounded by parenthesis.
e.g.

v3 = v1 + (v2 >> 2); % v3 = v1 + v2^(-2)

v1 = (i0 >> 1) - (i0 >> 3); % v1 = 0.375 * i0;

Note: The shift operation performs an arithmetic shift to the right, so the sign of the originating
value is preserved. For shifts to the left, it’s the user’s responsibility that the shifted value is handled
correctly.

All characters on a line following a '%' are considered to be a comment. The '%'-character can be the
first one on a line, or can be following an assignment.

If for some reason you are not satisfied with the default start characters, it is possible to define your
own identifiers by starting the cir-file (in any case before the first assignment) with the string

iocDef = 'xxxx';

where

• the first x is replaced with the new character to identify the inputs with,
• the second x with the new character for outputs, and
• the third and fourth x’s with new characters for recognizing the coefficients.
e.g.

iocDef = 'XYab';

Remember that identifiers are case-sensitive.

Scheduling Toolbox for MATLAB Reference Guide 32

Some remarks concerning the VHDL code for simulation and implementation.

Although not mentioned in the cir file, the VHDL code that will be generated for the circuit will define
5 other external control connections, viz.

• input ports for Clk and Reset,
• ports for the activation and completion signals: Start and Done, as well as
• an additional Error signal that will go high in case of overflow errors during calculations.

The SSG starts calculating at the first positive going clock edge of Clk, following a low-to-high
transition of the Start-signal. At each following positive going Clk-edge, the next STATE is executed.
Finally the Done signal is set high when the output value(s) are valid. Then the process can start all
over again (see also the chapter about Simulation timing setup).

In the set-up used here, it is expected that the coefficients are passed to the circuit by means of a
.INP-file. Changing the transfer characteristic of the filter –limited only by the structure used– is then
very simple.
It is certainly possible, if the coefficients don’t change during a simulation, to have them stored or
hardwired in the feedback and ext I/O layer. This implies manually editing the VHDL-files or
rewriting the MATLAB function.

From a computational point of view, it cannot be assumed that the data busses in the (S)SG should
have the same width as in the feedback layer and the outside world. If intermediate computational
results in the (S)SG would need additional bits, the bus inside the (S)SG can be made wider than the
external bus.
This, however, is not influencing the cir-file and the scheduling process.
It does become crucial when simulating the circuit in MATLAB or VHDL. Indeed, it is with these
functions, that this information has to be passed in the form of the fixed-point variables [N M] and
[N M x]. See the next Chapter, Signed fixed-point notation, for a description of this notation.

Scheduling Toolbox for MATLAB Reference Guide 33

Signed fixed-point notation

In most of the Digital Signal Processing designs, calculations are performed with the aid of fixed- point hardware
instead of floating-point hardware. The added complexity and hardware resources that are needed by floating-point
solutions are always more expensive then fixed-point solutions, and are usually only justifiable for systems with
high dynamic ranges. In our filter design, we will also use a fixed-point implementation.

Surely, everyone is acquainted with the all integer representation, i.e. where we are dealing with only positive whole
numbers. Since this is a severe limitation in calculations, it is a necessity to also be able to represent negative
numbers. For this purpose, the 2’s-complement method is the most widely used representation. In this
representation, the MSB is assigned a negative weight (see Table B1). The most appealing advantage of this
representation is the fact that no additional hardware is needed to perform additions and subtractions; the drawback
is that negating a number is not merely an inversion of each bit since the number representation is asymmetrical.

Table 1. N-bits integer representations (2’s complement for signed)

 value range

unsigned 0
0

1
1

2
2

1
1 22 sbsbbbN N

N
N

NUINT ++++= −
−

−
− L

120 −≤≤ N
UINTN

signed 0
0

1
1

2
2

1
1 22 sbsbbbN N

N
N

NSINT ++++−= −
−

−
− L ()122 11 −≤≤− −− N

SINT
N N

However, there is no reason why we should not insert a virtual binary point somewhere between the
bits. In fact, for integer representations this point is just assumed to be to the right of the least
significant bit. Inserting a binary point influences the weights of each bit, as is indicated in Figure 3,
again for an N bits fixed point number. We distinguish a ‘whole part’ and a ‘fraction part’.

The binary point itself is generally not coded, but its position has to be known by the software and/or
the user: in our notation between the (M+1)th and the Mth bits from the right.

2
−12

2 2
−22

1 2
−32

0 2
−4 2

−M

b0b1b 2b3b4b5b6b7b 8

.

N bits

M bits
N M −

if signed: 2−
N M − −

1

if unsigned: 2
N M −

whole number
part

fraction part

binary point
or

radix point
Figure 3. Fixed-point notation.

The relation between binary bits and decimal values, and the attainable ranges for these values, are
tabulated in Table 2, given an N bit binary number of which M bits are fraction bits.

Scheduling Toolbox for MATLAB Reference Guide 34

 Table 2. [N M]-bits fixed point representations (2’s complement for signed)
 value range

unsigned ∑∑
−

=

−
−

=

− +=
1

0

1

22
M

j

Mj
j

N

Mi

Mi
iUMIX bbN

⎟
⎠
⎞

⎜
⎝
⎛ −≤≤ −

M
MN

UMIXN
2
120

signed ∑∑
−

=

−
−

=

−−−
− ++−=

1

0

2
1

1 222
M

j

Mj
j

N

Mi

Mi
i

MN
NSMIX bbbN

⎟
⎠
⎞

⎜
⎝
⎛ −≤≤− −−−−

M
MN

SMIX
MN N

2
122 11

The difference between two consecutive numbers, the resolution, is thus M2
1

.

A special case is obtained when 1+= MN . There is only one bit left of the binary point: the weighted
sign bit which is either 0 or −1. All other bits are used to represent a fractional number less than 1.
The exact range in this case can be calculated with

⎟
⎠
⎞

⎜
⎝
⎛ −≤≤− MSFRACN

2
110.1

Because of the usually lower number of bits compared with e.g. the number of bits used in MATLAB
calculations, the conversion from MATLAB’s “doubles” into fixed-point values will most certainly

result in quantization errors (worst case errors amounts to M−2 in case the translation is by

truncation, or maximally 12 −−M in case of rounding).

Together, all these quantization errors determine the final resulting computational accuracy.

In our software we use the notation [N M] to indicate a signed value with totally N bits, of which M are
used for representing the fraction part: exactly as has been described above.

During the calculations, it is possible that intermediate computational results could only be
represented using more then N bits. This can be the case e.g. when summing a number of positive and
negative values, where the resulting value is known to always fit in the N bits. In such a case, we can
increase the number of bits inside the SSG to the left of the MSB with x bits and denote it as [N M x].
Instead of N-M bits for the whole part, we now use N+x-M bits for the whole part. The software takes
care for an appropriate handling of the sign-bit.

In the ALU.m, MUL.m and resources_reg.vhd files, one can see how the computations are exactly
implemented.

Usually, we will use the hexadecimal (hex) format (also without a visual binary point) instead of the
pure binary representation.

Scheduling Toolbox for MATLAB Reference Guide 35

Setup of the .INP- and .OUT-files

The .INP file is an ASCII text file, that can be created with any plain text editor or with the aid of the
gen_INP MATLAB utility.
The .INP file contains

• optionally a number of comment lines (indicated by starting with --),
• all coefficients in hexadecimal format,
• optionally a number of comment lines,
• all input data in hexadecimal format.

The sequence in which the values of the coefficients should be entered, has been written in the
MATLAB command window when gen_mTB had been run (normally, this is according to the identifiers
of the coefficients sorted in ascending order).
Each data input line represents an input value for an (external) input port. If the circuit contains more
than one input, the data lines represent the data for every input port for a particular sample.
If all inputs have been handled, the data for the next sample follows, again for each input port.
An example of a .INP-listing for a 5th order FIR-filter (6 coefficients) with an input I0 and an output
called O5 is shown below.

-- [17 15] fixed point format
-- coefficients: c0,c1,c2,c3,c4,c5
x"1F654"
x"00BAF"
x"03D0E"
x"03D0E"
x"00BAF"
x"1F654"
-- input function
x"00000"
x"00000"
x"08000"
x"08000"
x"08000"
x"08000"
x"08000"
x"08000"
x"08000"

input values (for I0 in this example)
are read one by one, while each of them
is followed by one pass through the SSG
and result in an output value (from O5)
in ‘FIR5.OUT’

start with the
constant coefficients,

followed by the
input data sequence to
be investigated

comment lines are allowed before
the coefficients block and before
the inputs block (in ‘ ’ VHDL format)--

hex VHDL format should
be used for all data

 .INP-file format (both for MATLAB and VHDL)

The hex values above hold true for a [17 15] signed 2’s complement fixed-point format, e.g. 2 bits for
the integer part (of which the MSB reflects the weighted sign-bit) and 15 bits for the fractional part.
So x”08000” means 0_1.000_0000_0000_0000, which is a ‘1’ (unit step function as an input, starting
at n = 2). It will be clear that x”1F654” (the first and last coefficients) represents a negative number
since its sign bit is set.

In the .OUT-file, the same hex format will be used. Output is also written line by line, e.g. one data
line for each output resulting from the same input sample, then the same procedure for the next
sample, and so on. The .OUT-files are started with two comment lines, which a.o. lists the format in
which the hex data has been written.

Scheduling Toolbox for MATLAB Reference Guide 36

Simulation timing setup

Clk

50 ns p.e. 90 ns

X clock cycles

Y clock cycles

depending on number of STATES

depending on 'Sample Frequency'

Done

New_Sample

first input data value(s)
 read from -file.INP

next value(s) read from -file.INP

Reset

all coefficients are read from the -file.INP

output value(s) written to -file.OUT

start PASS 2, STATE 1

The simulation starts each run with an initialization phase in which an asynchronous Reset is issued
that clears all internal registers. At the first positive going edge of the (SSG/system) Clk when Reset
is high, all coefficients from the .INP-file are read and the Done bit goes high to signal that the SSG is
ready and awaiting.

At each New_Sample (= Start) going high, a new input data value (or as many input values as there
are external inputs) is (are) read from the .INP-file. At the first positive going edge of the clock, the
SSG process sets Done low and starts with its first STATE. The STATES are advanced each clock
period. Finally, its Done signal goes high again, and everything is halted until the next sample arrives.
When this actually happens is, of course, determined by the sample frequency to SSG clock ratio and,
when the sample frequency is relatively low, can take a large number of SSG clock cycles. In the
simulation testbench, the time that a new sample pulse trails the Done edge is fixed and set to a value
of 90 ns, slightly less then 2 clock periods (one Clk-period is set to 50 ns).

The .OUT-file is written each time that Done goes low with the same number of output values as there
are external output ports.

Scheduling Toolbox for MATLAB Reference Guide 37

Overview of the Software Environment

Both gen_mTB and gen_VHD will write a number of files in specific directories that will be created
automatically when the programs are used for the first time.

Suppose that you are working with a .cir-file called ‘NAME.cir’ and that you saved this file in the
directory ‘$YOUR_CIR_DIR’, then

after running a new directory will be created,
with the following files:

will result in the following set-up:

gen_mTB

 <$YOUR_CIR_DIR>/NAME/matlab / testbench_NAME_auto.m
 TB_NAME_auto.m
 NAME.INP

gen_VHD_template

 <$YOUR_CIR_DIR>/NAME/vhdl / testbench_NAME_auto.vhd
 NAME_auto.vhd
 NAME_SSG_auto.vhd
 resources_reg.vhd
 txt_util2.vhd

NAME.INP

this is the m-file you will call

create these .INP-files
(they can be identical)

 all 6 files are needed for simulation

these 3 files are needed for synthesis

Both testbenches will write a file NAME.OUT in the directory from where they are run.

Scheduling Toolbox for MATLAB Reference Guide 38

VHDL resources

If synthesized with Synplify Pro, the architectures described in resources_reg.vhd with their generic
buswidths [17 15], viz. ALU_R, MUL_R and REG_R, look as shown below.

un1_op2_1[15:0]

0

1
tmp_s[16:0]

+

result_r[15:0]

R

un1_overflow_s

overflow_r

R

overflow

result[15:0][15:0]

opcode[0]

op2[15:0] [15:0]

op1[15:0] [15:0]

clk_en

clk

reset

[15]
[15:0]

[15]
[15:0]

[15:0]

[15:0][15:0]

[16:0]

[15:0]Q[15:0][15:0] D[15:0]
E

[15]
[16] Q[0]D[0]

E

ALU_R

 MUL_R

tmp_s[31:0]

*
+ -

result[15:0]

R

result[15:0][15:0]

op2[15:0] [15:0]

op1[15:0] [15:0]

clk_en

clk

reset

[15:0]

[31:0][15:0] [15:0]Q[15:0][30:15] D[15:0]
E

REG_R

Q[15:0]

R

Q[15:0][15:0]D[15:0] [15:0]
clk_en

clk

reset

[15:0]Q[15:0][15:0] D[15:0]
E

Scheduling Toolbox for MATLAB Reference Guide 39

This page intentionally left blank

Scheduling Toolbox for MATLAB Reference Guide 40

